Simulation & Modeling
Jieqi Wang; Li Zhao; Minju Song; Fenge Hu; Xuelian He
Abstract
The influence of long branches on crystallization behavior has been studied by means of molecular dynamics simulations. Using two systems: polyethylene (PE) with long branches (LCB-PE) and PE without long branches (linear-PE) with the same molecular weight, we have examined the crystallization behavior ...
Read More
The influence of long branches on crystallization behavior has been studied by means of molecular dynamics simulations. Using two systems: polyethylene (PE) with long branches (LCB-PE) and PE without long branches (linear-PE) with the same molecular weight, we have examined the crystallization behavior of the two systems by molecular dynamics simulation. This paper explains the influence of long branches on the isothermal crystallization process and the non-isothermal crystallization process with similar initial interchain contact fraction (ICF) in terms of final ICF, crystal regions, crystallinity, concentration of tie chains and energy. It is found that the crystallization process is classified as two stages: the nucleation stage and the crystal growth stage. The existence of long branches is favorable for the first stage while unfavorable for the second stage. Knots that act as crystalline defects are excluded from the lamella, resulting in decreasing in regularity and crystallinity of molecular chains. From the perspective of potential energy and non-bond energy, LCB-PE has lower energy than linear-PE in the nucleation stage while the energy of linear-PE is lower than that of LCB-PE in the second stage. In short, the long branched chains inhibit the crystallization process.
Reaction engineering
Mohsen Najafi; Mahmoud Parvazinia; Mir Hamid Reza Ghoreishy
Abstract
A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed ...
Read More
A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The initial catalyst active sites distribution was assumed to be uniform, while the monomer diffusion coefficient was considered to be different inside the fragments and cracks. In other words, the cracks were distinguished from fragments with higher monomer diffusion coefficient. To model the particle temperature a lumped heat transfer model was used. The fragmentation pattern was considered to remain unchanged during the polymerization. A Galerkin finite element method was used to solve the resulting two-dimensional (2-D) moving boundary value, diffusion-reaction problem. A two-dimensional polymeric flow model (PFM) was implemented on the finite element meshes. The simulation results showed that the fragmentation pattern had effects on the molecular properties, reaction rate and the particle temperature at early stages of polymerization.
Olefin oligomerization
Tanja H. Ritter; Helmut G. Alt
Abstract
Nine different bis(arylimino)pyridine complexes of Fe(III) with different halide substituents (F, Cl, Br, I) at different positions of the iminophenyl group of the ligand have been synthesized, characterized and applied for homogeneous 1-pentene and 1-hexene oligomerization and co-oligomerization reactions ...
Read More
Nine different bis(arylimino)pyridine complexes of Fe(III) with different halide substituents (F, Cl, Br, I) at different positions of the iminophenyl group of the ligand have been synthesized, characterized and applied for homogeneous 1-pentene and 1-hexene oligomerization and co-oligomerization reactions after activation with methylaluminoxane (MAO). The best activity in 1-hexene oligomerization (152 kg/mol.h) was observed for 4/ MAO with an iodine substituent in para position of the iminophenyl group. Fluorine substituents in the meta position of the iminophenyl group proved as disadvantageous (1 kg/mol.h) in homo-oligomerization reactions but advantageous in co-oligomerization reactions of 1-pentene and 1-hexene. Obviously, tiny electronic or steric differences at the active sites of the corresponding catalysts are responsible for this result (structure-property relationship). The product distributions of the co-dimerization reactions of 1-pentene and 1-hexene reflected a binominal behaviour with dominating co-products. The ratio of dimers is 1:2:1 (C10:C11:C12) while the trimers (pentadecenes up to octadecenes) show proportions of 1:3:3:1.
Characterization
Mina Ahsani; Meisam Dabiri Havigh; Reza Yegani
Abstract
A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin ...
Read More
A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each protein filtration, increasing the operational pressure led to higher irreversible fouling ratio (IFR) and consequently lower flux recovery (FR). Moreover, in collagen filtration, the higher portion of the total fouling ratio (TFR) belonged to reversible fouling ratio (RFR) and the FR of membrane in collagen solution filtration was higher than that in BSA solution filtration at the same operational pressure. The FR values were about 42.48 and 56.32% at 2 bar, 52.28 and 64.53% at 1.5 bar and 65.97 and 75.83% at 0.75 bar for BSA and collagen solutions filtrations, respectively. Investigation of the fouling mechanisms using Hermia's models showed that the cake filtration mechanism of fouling turned to pore blocking mechanism in both proteins filtrations by increasing the operational pressure. Obtained results using combined fouling models for all filtration processes confirmed that the cake filtration-standard blocking model (CFSBM) was the prevailing mechanism, whilst the contribution of standard blockage increased by increasing the operational pressure.
Catalysis
Maria Carmela Sacchi; Simona Losio; Paola Stagnaro; Giorgio Mancini; Luca Boragno; Stefano Menichetti; Caterina Viglianisi; Sara Limbo
Abstract
Some innovative solutions are proposed to the problem of the unavoidable physical migration of antioxidants from plastic films for packaging, in order to minimize the consequent undesirable effect of food contamination. In previous exploratory tests, phenolic antioxidant co-units were achieved and incorporated ...
Read More
Some innovative solutions are proposed to the problem of the unavoidable physical migration of antioxidants from plastic films for packaging, in order to minimize the consequent undesirable effect of food contamination. In previous exploratory tests, phenolic antioxidant co-units were achieved and incorporated into polyethylene chain and now the work is extended to create new families of polymeric additives properly designed for specific material. An effective route was designed to synthesize the functionalized comonomer, analogues of commercial 2,6-t-butyl-4-methoxy-phenol (BHA), containing eight methylene units as spacer between the aromatic ring and the polymerizable olefinic double bond (C8). Ethylene/1-hexene/C8 terpolymers, with 1-hexene concentration in the typical range found in commercial polyethylene grades, and propylene/C8 copolymers with microstructure similar to those of commercial packaging polypropylenes were produced. A careful 13C NMR study was conducted for the precise determination of the functionalized comonomer content on all terpolymer and copolymer samples. The samples melt blended with additive-free commercial LDPE and PP matrices, individually, were analyzed in terms of thermal and thermo-oxidative stability and compared with LDPE and PP films containing the traditional BHA additive analogue. The results demonstrate that, in either way, the polymeric additives exert a very positive effect on the degradation temperature of the polymeric matrices, retarding the thermo-oxidative sequence of reaction.
Polyolefins Industry
Naeimeh Bahri-Laleh; Mehdi Nekoomanesh-Haghighi; Samahe Sadjadi; Ali Pajouhan
Abstract
Due to easy availability of cheaper raw material and increase in new applications, the use of polyolefins in various industries is becoming a major priority. The Middle East region, on account of its vast oil and gas reserves has, in the last decade or so, been developing many new petrochemical complexes ...
Read More
Due to easy availability of cheaper raw material and increase in new applications, the use of polyolefins in various industries is becoming a major priority. The Middle East region, on account of its vast oil and gas reserves has, in the last decade or so, been developing many new petrochemical complexes with their expansion into colossal polyolefin production capacities. The predictions are that by 2020 the Middle East region will dominate the polyolefin industry as a whole. Furthermore, with proven oil reserves of about 21.7 thousand million tons (4th world ranking) and natural gas of 34.0 trillion cubic meters (1st world ranking), Iran’s petrochemical industry is supported by diverse and abundant feedstock reserves. In line with other polyolefin producers’ developments in the Middle East, Iran's National Petrochemical Company (NPC) has undergone massive structural and technological transformations in the last two decades in order to set up ambitious plans for further capacity increase and native technology developments. This article mainly focuses on Iran today’s position and its future plans in the polyolefins industry.
Mohamad Hafizi Bin Zakria; Mohd Ghazali Mohd Nawawi; Mohd Rizal Abdul Rahman
Abstract
The study was conducted in the actual world-scale olefin plant with a focus on measuring the impact of identified controlled variables at the steam cracker furnace towards the propylene yield. Surface response analysis was conducted in the Minitab software version 20 using the historical data after the ...
Read More
The study was conducted in the actual world-scale olefin plant with a focus on measuring the impact of identified controlled variables at the steam cracker furnace towards the propylene yield. Surface response analysis was conducted in the Minitab software version 20 using the historical data after the clearance of both the outliers and residuals to ensure the analysis was conducted as normal data. Surface response analysis is a robust mathematical and statistical approach that is having a good potential to be systematically utilized in the actual large-scale olefin plant as an alternative to the expensive olefin simulation software for process monitoring. The analysis was conducted to forecast the maximum propylene yield in the studied plant with careful consideration to select only significant variables, represented by a variance inflation factor (VIF) <10 and p-value <0.05 in the analysis of variance (ANOVA) table. The final model successfully concluded that propylene yield in the studied plant was contributed by the factors of 0.00496, 0.00204, and -3.96 of hearth burner flow, dilution steam flow, and naphtha feed flow respectively. The response optimizer also suggested that the propylene yield from naphtha pyrolysis cracking in the studied plant could be maximized at 11.47% with the control setting at 10,004.36 kg/hr of hearth burner flow, 40,960 kg/hr of dilution steam flow, and 63.50 t/hr of naphtha feed flow.
Catalysis
Helmut G. Alt
Abstract
EEthylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical ...
Read More
EEthylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical properties like linear low density polyethylene (LLDPE). In this contribution, three different types of catalysts are presented that are able to do not only one job at a time but three. These are “intelligent catalysts”. Catalysts of type 1 are homogeneous metallocene complexes that can be activated with methylaluminoxane (MAO).With ethylene they produce their own support and they become heterogeneous catalysts (self-immobilization) and they prevent fouling in polymerization reactors. The produced resin has evenly distributed ethyl branches (without a comonomer) with unique properties and the MAO that is necessary in the activation step can be recycled. Catalysts of type 2 are dinuclear complexes with two different active sites. One centre can oligomerize ethylene and the other one can copolymerize the in statu nascendi produced oligomers with ethylene to give branched LLDPE (a molecule as the smallest reactor for LLDPE) and/or bimodal resins.Catalysts of type 3 are MAO activated iron di (imino) pyridine complexes that are able to oligomerize ethylene to give not only oligomers with even numbered carbon atoms but also odd numbered ones. In this reaction, one catalyst does three jobs at a time: oligomerization, isomerization and metathesis of ethylene.
Characterization
Reza Poorghasemi; Yousef Jahani
Abstract
In this work, the compatibility and crystallinity of low density polyethylene (LDPE) and polybutene-1 (PB-1) blends were studied. Various blends of LDPE/PB-1 containing 5, 10 and 20 wt.% PB-1 were prepared in a corotating twin-screw extruder and characterized by scanning electron microscopy (SEM), shear ...
Read More
In this work, the compatibility and crystallinity of low density polyethylene (LDPE) and polybutene-1 (PB-1) blends were studied. Various blends of LDPE/PB-1 containing 5, 10 and 20 wt.% PB-1 were prepared in a corotating twin-screw extruder and characterized by scanning electron microscopy (SEM), shear oscillation rheology and wide-angle X-ray diffractometry (WAXD). A matrix-droplet morphology was observed in SEM images, indicating incompatibility of the two polymers in the solid state. Compared to neat LDPE, the relaxation spectra of the blends were broadened, and a slight increase in their relaxation times was observed. The relaxation time of the blends was enhanced by increasing PB-1 content, which was further proved by fitting rheological data in the Carreau-Yasuda model. Deviation of Cole-Cole diagrams from circular shape means that the blend samples were not miscible and the positive-deviation behavior of the complex viscosity and storage modulus from the mixing rule revealed the formation of strong interfacial interactions. The crystallinity of both LLDPE and PB-1 was decreased as a result of blending. The peaks attributed to the form II of PB-1 crystals were eliminated and the peaks related to LDPE were obviously weakened, suggesting to prevent crystallinity of polymers which is associated with a reduction in the total crystallinity percentage for the blend. The reduction of crystallinity was more pronounced in PB-1 phase.
Dragoslav Stoiljkovic; Slobodan Jovanović
Abstract
At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. ...
Read More
At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second or third order. An ideal gas consists of single translating and rotating molecules. α phase consists of rotating single molecules and rotating molecular pairs and it exists when the volume V is reduced to Vc
Polyolefin degradation
Soheyl Khajehpour-Tadavani; Gholam-Reza Nejabat; Mohammad-Mahdi Mortazavi
Abstract
Crystallinities of high-density polyethylene (HDPE) films containing various amounts of an oxo-biodegradable additive (HES-W) were investigated immediately after preparation and 6 weeks after ultraviolet (UV) irradiation (λ=254 nm). HDPE granules were mixed with oxo-biodegradable masterbatch in ...
Read More
Crystallinities of high-density polyethylene (HDPE) films containing various amounts of an oxo-biodegradable additive (HES-W) were investigated immediately after preparation and 6 weeks after ultraviolet (UV) irradiation (λ=254 nm). HDPE granules were mixed with oxo-biodegradable masterbatch in a twin-screw extruder and the extrudates were converted into films with thicknesses of 35±5 micrometers. The films were exposed to UV light for 6 weeks. Crystallinities of the films are investigated by X-ray diffraction spectroscopy (XRD) and differential scanning calorimetry (DSC). The XRD results show that upon UV exposure, the crystallinities of the films enhance. The DSC thermograms have confirmed the XRD results and also show a decrease in melting points of the samples after UV exposure. Further investigations on viscosity average molecular weights (Mv) of the samples show that their Mv decrease sharply after UV exposure. Scanning electron microscopy (SEM) shows clear cracks on the samples surfaces after 6 weeks exposure to UV irradiation. Investigating the functionalities of the polymers through Fourier transform infrared spectroscopy (FTIR) show the emergence of carbonyl peaks after UV irradiation so that the carbonyl index of the samples increases. It is concluded that maximum oxo-biodegradation enhancement of the HDPE film samples can be achieved by using a specific amount of the oxo-compound (3 wt%); furthermore the crystallinities of the samples show considerable enhancement after UV exposure which can be due to better packing ability of low molecular weight chains along with probable dipole-dipole attractions between the carbonyl groups on different newly formed short polar chains.
Simulation & Modeling
Sara Shahbazi; Yaser Jafari; Fathollah Moztarzadeh; Gity Mir Mohamad Sadeghi
Abstract
Poly (propylene fumarate) (PPF), a linear unsaturated polyester consisting of alternating propylene glycol and fumaric acid units, can be cured in vivo to fill the skeletal defects with minimal surgical intervention. Many different methods have been reported for synthesizing PPF, but none of them gives ...
Read More
Poly (propylene fumarate) (PPF), a linear unsaturated polyester consisting of alternating propylene glycol and fumaric acid units, can be cured in vivo to fill the skeletal defects with minimal surgical intervention. Many different methods have been reported for synthesizing PPF, but none of them gives a clear method. The present paper introduces two new methods in PPF synthesis: Modified reflux system (MRS) and mixed reflux-distillation system (MRDS). Similarly, the effects of applying vacuum (vacuum sequence, time, vacuum applying position, and the distance between vacuum applying position and reactor) as well as nitrogen gas (used continuously or only as an N2 blanket) on the PPF synthesis have been studied. The PPF obtained using optimum reaction condition has been characterized by using NMR, FTIR, and GPC analyses. It is demonstrated that the efficiency of MRDS in synthesizing PPF is higher than that of MRS. Nitrogen gas, vacuum applying position, continuously/stepwise-continuously applying vacuum and other parameters show an important role in the polymerization of PPF in both the MRDS and MRS systems.
Wei Wang; Shuzhang Qu; Xinwei Li; Jian Chen; Xiaolei Wang; Cui Zheng; Min Guo; Ying Wang
Abstract
Cyclic olefin copolymer is a type of high-performance polyolefin material, which is prepared by using a single-site catalyst in solution polymerization. The common activator of this system is alkyl aluminoxane or organic boron/aluminum system. Among them, organic boron is mostly triphenylcarbenium ...
Read More
Cyclic olefin copolymer is a type of high-performance polyolefin material, which is prepared by using a single-site catalyst in solution polymerization. The common activator of this system is alkyl aluminoxane or organic boron/aluminum system. Among them, organic boron is mostly triphenylcarbenium tetrakis(pentafluorophenyl)borate or dimethylanilinium tetrakis(pentafluorophenyl)borate. In this study, ethylene and norbornene were copolymerized with metallocene catalyst activated with the combination of tris(pentafluorophenyl)boron and triisobutylaluminium. Compared with homopolymerization of ethylene, copolymerization shows high activity. The molecular weight of the polymer increased significantly with the increase of the insertion rate of norbornene. Fineman-Ross method was used to calculate the reactivity ratio, which showed that the reactivity ratio of norbornene was much lower than that of ethylene. The high copolymerization activity may indicate that, although norbornene has a lower coordination probability, its insertion rate is higher than ethylene. The copolymer with higher norbornene incorporation has a higher glass transition temperature, and the relationship between them is linear.
Catalysis
Gholam-Reza Nejabat; Mehdi Nekoomanesh; Hassan Arabi; Hamid Salehi-Mobarakeh; Gholam-Hossein Zohuri; Mohammad-Mahdi Mortazavi; Saeid Ahmadjo; Stephen A. Miller
Abstract
Several types of hybrid catalysts are made through mixing of 4th generation Ziegler-Natta (ZN) and (2-PhInd)2ZrCl2 metallocene catalysts using triethylaluminum (TEA) as coupling agent. Response surface methodology (RSM) is used to evaluate the interactive effects of different parameters including ...
Read More
Several types of hybrid catalysts are made through mixing of 4th generation Ziegler-Natta (ZN) and (2-PhInd)2ZrCl2 metallocene catalysts using triethylaluminum (TEA) as coupling agent. Response surface methodology (RSM) is used to evaluate the interactive effects of different parameters including amounts of metallocene and TEA and temperature on metallocene loading. Analyzing the amounts of Al and Zr elements in the hybrid catalysts through ICP-OES and EDXA reveals that temperature plays a crucial role on anchoring of the metallocene catalyst on ZN while TEA has the least determining effect. The ICP analysis shows that as the concentration of Al goes up in the hybrid catalyst the concentration of Zr passes a maximum, while EDXA shows a direct relationship between the Al and Zr contents. Using triisobutylaluminum (TIBA) and methylaluminoxane (MAO) as the coupling agents, almost similar metallocene loadings are observed. Finally, the performance of hybrid catalysts is investigated in propylene polymerization and the obtained polymers are characterized using DSC and DMTA through which the presence of two types of polymers in the final product are confirmed.
Catalysis
Takao Tayano; Takehiro Sagae; Takashi Atsumi; Hideshi Uchino; Masahide Murata; Tsutomu Sato
Abstract
Spray dry granulation of clay minerals was studied to obtain clay mineral base support material for metallocene supported olefin polymerization catalysts. The morphology of the granules was strongly influenced by the nature of the clay mineral itself. Because of swelling characteristics of montmorillonite, ...
Read More
Spray dry granulation of clay minerals was studied to obtain clay mineral base support material for metallocene supported olefin polymerization catalysts. The morphology of the granules was strongly influenced by the nature of the clay mineral itself. Because of swelling characteristics of montmorillonite, its water dispersion was highly viscous even in the low slurry concentration (< 4 wt %). Therefore, it was very difficult to control the granule characteristics such as size, shape, and inside structure by the spray dry with the clay mineral slurry. Then we examined some methods in order to change the clay mineral surface properties for getting less viscous dispersion. It was found that the milling of montmorillonite increased the amount of surface OH groups. This surface characteristic change should promote the interaction between the edges and basal planes of the primary particles of milled montmorillonite, resulting in the lowering the slurry viscosity. The milling is effective for overcoming difficulty in use of high concentration montmorillonite slurry in spray dry granulation which is indispensable for producing granules in the wide range of size (10–50 μm). The spray-dried montmorillonite granules are useful as a "Support-Activator" for an olefin polymerization catalyst combined with metallocenes.
Olefin polymerization and copolymerization
Wei Wang; Taoyi Zhang; Liping Hou
Abstract
The present paper systematically studies the homo- and copolymerization of ethylene or propylene using metallocene as catalyst and diethyl zinc as chain transfer agent to obtain the polyolefin waxes with narrow molecular weight distribution and with a high activity. The molecular weight of the resultant ...
Read More
The present paper systematically studies the homo- and copolymerization of ethylene or propylene using metallocene as catalyst and diethyl zinc as chain transfer agent to obtain the polyolefin waxes with narrow molecular weight distribution and with a high activity. The molecular weight of the resultant polymer could be controllable by the concentration of diethyl zinc quantitatively. The introduction of a-olefin into the ethylene polymerization system would shield the chain transfer action, and the shielding effect in propylene (co) polymerization is more serious, due to the mass transfer resistance of the substituents on the monomers. Branched comonomer and long chain comonomer provide stronger shielding effect. The regression results show that the order of the chain transfer reaction of propylene polymerization is smaller than that of ethylene polymerization, and the order of the chain transfer reaction of copolymerization is less than that of homopolymerization. It indicates that the substituent on the monomer would result in the deviation of the regression data from the ideal primary reaction order.
Composites and nanocomposites
Afshar Alihosseini; Amin Hedayati Moghaddam
Abstract
In this work, the effects of operative parameters on CH4, CO2, O2, and N2 membrane gas separation for poly (4-methyl-1-pentane) (PMP) membrane modified by adding nanoparticles of TiO2, ZnO, and Al2O3 are assessed and investigated. The operative parameters were type and percentage of nanoparticles, and ...
Read More
In this work, the effects of operative parameters on CH4, CO2, O2, and N2 membrane gas separation for poly (4-methyl-1-pentane) (PMP) membrane modified by adding nanoparticles of TiO2, ZnO, and Al2O3 are assessed and investigated. The operative parameters were type and percentage of nanoparticles, and cross membrane pressure. The membrane permeability and selectivity were selected as the responses and indexes of separation process performance. To design the experimental layout, design of experiment methodology (DoE) techniques were used. Further, the separation process was modeled and simulated using artificial intelligence (AI) methods. So, a robust black-box model based on radial basis function (RBF) network was developed and trained with the ability for predicting the performance of membrane process. The developed model could simulate the process and predict the permeability with R2-validation of 0.9. Finally, it was found that addition of nanoparticles and increasing the operative pressure had positive effects on membrane performance. Maximum permeability values for O2, N2, CO2 and CH4 were 181.58, 52.09, 550.85, and 54.26, respectively. The maximum values of validation-R2 of optimum structure for CO2/N2 and CO2/CH4 selectivity were 0.8697 and 0.7028, respectively.
Characterization
Ning Zhao; Ruihua Cheng; Qi Dong; Xuelian He; Zhen Liu; Shiliang Zhang; Minoru Terano; Boping Liu
Abstract
SiO2-supported silyl chromate catalyst is an important industrial catalyst for production of high grade HDPE pipe materials. The control of the short chain branch (SCB) distribution using this catalyst system is still a great challenge. In this work, ethylene and 1-hexene copolymers were synthesized ...
Read More
SiO2-supported silyl chromate catalyst is an important industrial catalyst for production of high grade HDPE pipe materials. The control of the short chain branch (SCB) distribution using this catalyst system is still a great challenge. In this work, ethylene and 1-hexene copolymers were synthesized using SiO2-supported silyl chromate catalyst combined with triisobutylaluminium (TIBA), triethylaluminium (TEA) and mixed TIBA/TEA at molar ratio 1:1 (TIBA/TEA/1:1) as three different Al-alkyl co-catalysts.The temperature rising elution fractionation (TREF) and successive self-nucleation and annealing (SSA, by DSC) methods were combined to analyze the short chain branch distribution (SCBD) of these ethylene/1-hexene copolymers. The results showed that different types of co-catalyst had a great influence on SCBD of ethylene/1-hexene copolymers. The copolymer produced with TIBA showed better SCBD than the copolymer produced with TEA, and the copolymer produced with TIBA/ TEA/1:1 showed a SCBD in between those with TIBA and TEA.
Catalysis
Feng He; Peiyuan Li; Anyang Wu; Tao Xu; Zhisheng Fu; Liang Zhu; Zhiqiang Fan
Abstract
In this paper, a series of well-defined polyethylene-b-polytetrafluoroethylene diblock copolymers (PE–b– PTFEs) were prepared by a coupling reaction of hydroxyl-terminated polyethylene (PE–OH) and isocyanateterminated 1H,1H-perfluoro-1-tetradecanol (PFDO–NCO). PE–OH was ...
Read More
In this paper, a series of well-defined polyethylene-b-polytetrafluoroethylene diblock copolymers (PE–b– PTFEs) were prepared by a coupling reaction of hydroxyl-terminated polyethylene (PE–OH) and isocyanateterminated 1H,1H-perfluoro-1-tetradecanol (PFDO–NCO). PE–OH was prepared by the coordination chain transfer polymerization using 2,6-bis[1-(2,6-diisopropylphenyl)imino ethyl] pyridine iron (II) dichloride /dry ethylaluminoxane/ZnEt2 as catalyst and subsequent in situ oxidation with oxygen. PFDO–NCO was synthesized through the condensation reaction of 1H,1H- perfluoro-1-tetradecanol (PFDO) with isophoronediisocyanate (IPDI). Subsequently, the thermal characterization and the application of these diblock copolymers were investigated. The relationship between the molecular structure and the properties was disclosed. The results indicated that the diblock copolymers were effective surface modification agents for linear low density polyethylene (LLDPE). After that the PE–b–PTFE being spin-coated onto the surface of LLDPE film, the film was dramatically turned into a superhydrophobic film with a water contact angle as high as 151.4º. This kind of film is potential to be used as selfcleaning, anti-icing and anticorrosion material.
Catalysis
Maria Marques; Renato Oliveira; Rafael Araujo; Bruno Amantes
Abstract
A fourth-generation Ziegler-Natta catalyst was prepared to synthesize polypropylene (PP), which was stabilized by in situpolymerization employing lignin as antioxidant. The antioxidant properties of lignin were compared with those of the commercial antioxidant Irganox 1010. The presence of lignin in ...
Read More
A fourth-generation Ziegler-Natta catalyst was prepared to synthesize polypropylene (PP), which was stabilized by in situpolymerization employing lignin as antioxidant. The antioxidant properties of lignin were compared with those of the commercial antioxidant Irganox 1010. The presence of lignin in the reaction medium slightly decreased the catalytic activity of the reaction. The isotacticity index (I.I.) of PP synthesized with lignin (PP-lig) was not affected by the presence of the additive in the reaction medium. The thermal properties, characterized by differential scanning calorimetry, showed slightly decreased degree of crystallinity (Xc), but the melting temperature (Tm) and crystallization temperature (Tc) were not affected when compared with the neat polymer. Lignin showed good activity as a stabilizer by thermogravimetry. The initial temperature of degradation (Tonset) increased when compared to the pure PP and PP stabilized with the commercial antioxidant. The lower carbonyl index of the PP, evaluated by infrared spectroscopy (FTIR) after thermo-oxidative treatment, also revealed the stabilizing action of lignin.
Catalysis
Ebrahim Ahmadi; Zahra Mohamadnia; Sajjad Rahimi; Mohammad Hasan Armanmehr; Mohammad Hossein Heydari; Mahmood Razmjoo
Abstract
Ethylene polymerization was carried out using Phillips chromium catalyst based on silica supports such as silica aerogel, SiO2 (Grace 643), and titanium modified SiO2 (G 643), and the results were compared with other catalysts based on SiO2 (Aldrich), SBA-15(Hex), SBA-15(Sp) and MCM-41. A combination ...
Read More
Ethylene polymerization was carried out using Phillips chromium catalyst based on silica supports such as silica aerogel, SiO2 (Grace 643), and titanium modified SiO2 (G 643), and the results were compared with other catalysts based on SiO2 (Aldrich), SBA-15(Hex), SBA-15(Sp) and MCM-41. A combination of TGA, DSC, XRD, nitrogen adsorption, SEM, ICP, FTIR and other analyses were used to characterize the materials. The results showed that the chromium was successfully introduced into silica supports. Shish-kebab polyethylene was prepared via in situ ethylene polymerization with the Cr/SiO2 (G 643) and Cr/Ti/SiO2 (G 643) catalytic systems. A comparison between different types of catalysts revealed that the polymerization activity of Cr/SiO2 (G 643) was significantly increased to 191 kg PE (g Cr)-1 h-1 due to the higher pore volume and pore diameter of Grace silica compared to the other supports. Also, the polymerization activity of the Cr/SiO2 (G 643) catalyst was significantly improved by Ti-modification.
Characterization
Ivan Kuryndin; Sergei Kostromin; Rustam Mamalimov; Anton Chervov; Andrei Grebennikov; Sergei Bronnikov
Abstract
Swelling of high-density polyethylene (PE) in organic solvents, orthodichlorobenzene and orthoxylene, was investigated. The swelling kinetics of the PE specimen was described by the first-order equation. For the first time, the PE specimen swelling rate constant was shown to decrease with increasing ...
Read More
Swelling of high-density polyethylene (PE) in organic solvents, orthodichlorobenzene and orthoxylene, was investigated. The swelling kinetics of the PE specimen was described by the first-order equation. For the first time, the PE specimen swelling rate constant was shown to decrease with increasing thickness of the specimens. The equilibrium swelling of the PE specimen was evaluated. It was found that equilibrium swelling is independent of the thickness of specimens. It was shown that storage of polyethylene specimens in organic solvents changes its mechanical properties (tensile strength, Young’s modulus, and elongation-at-break) due to polymer plasticization. We have shown that the increase in flexibility and elongation-at-break after relatively short-term immersion of PE samples in these organic solvents is significant. However, the tensile strength of swollen specimens remains high enough. The interaction between polymer chains and solvent molecules was not detected. The results obtained are important for the design and operation of PE coatings and PE products, such as pipes, tanks, and other accessories exposed to oil products.
Catalysis
Mikhail A. Matsko; Vladimir A. Zakharov; Marina I. Nikolaeva; Tatiana B. Mikenas
Abstract
The data on the effect of ethylene concentration on polymerization rate for several modifications of modern highly active titanium–magnesium catalysts TiCl4/MgCl2 are presented. These catalysts differ in titanium content and conditions of support preparation, activities, and the shape of kinetic ...
Read More
The data on the effect of ethylene concentration on polymerization rate for several modifications of modern highly active titanium–magnesium catalysts TiCl4/MgCl2 are presented. These catalysts differ in titanium content and conditions of support preparation, activities, and the shape of kinetic curves. It is found that the observed order of polymerization rate with respect to ethylene in the range of ethylene pressures of 0.5–6 bar is 1.8-2.1 for all catalysts used (polymerization at 80°C, AlEt3 used as a cocatalyst). When AlEt3 was replaced with Al(i-Bu)3, the reaction order decreased to 1.3-1.4. In order to elucidate the possible reasons for the observed high order with respect to ethylene, we analyzed the data on the effect of monomer concentration on the molecular weight of polyethylene. The results gave grounds for suggesting that the observed order with respect to monomer is attributable to the effect of ethylene concentration on the number of active sites. The possible reaction scheme explaining the nonlinear dependence of the polymerization rate on monomer concentration was proposed based on these data.
Olefin oligomerization
Ahad Hanifpour; Mahdi Hashemzadeh Gargari; Mohammad Reza Rostami Darounkola; Zahra Kalantari; Naeimeh Bahri-Laleh
Abstract
Herein a quenched-flow kinetic technique was applied to calculate the rate constants of 1-hexene and 1-octene oligomerization catalyzed by the Cp2ZrCl2 and Cp2HfCl2/MAO catalyst systems, and subsequently a mechanism for the higher α-olefin oligomerization reaction was proposed. The oligomerization ...
Read More
Herein a quenched-flow kinetic technique was applied to calculate the rate constants of 1-hexene and 1-octene oligomerization catalyzed by the Cp2ZrCl2 and Cp2HfCl2/MAO catalyst systems, and subsequently a mechanism for the higher α-olefin oligomerization reaction was proposed. The oligomerization results showed that Zr-based catalyst in the oligomerization of 1-octene had the highest activity of 17 in comparison to Hfbased one with an activity value of 15 g oligomer/(mmolCat.h)). According to the obtained results, increasing monomer length led to a shift in molecular weight and polydispersity index value (Mw/Mn) to lower values. Furthermore, the microstructure-viscosity relationship was followed by the calculation of branching ratio and short-chain branching percentage. The obtained results revealed that, the oligomers synthesized by the Cp2HfCl2 catalyst had lower short chain branching ratio value and short-chain branching percentages. According to the kinetic results, the initiation rate constant (ki) of Zr-based catalyst was higher than that of Hf-based catalyst, and the order of calculated propagation rate constants was Zr>Hf for both the 1-hexene and 1-octene-based oligomerizations.
Olefin polymerization and copolymerization
Aliasghar Mahdavi Akerdi; Mehdi Nekoomanesh
Abstract
The condition of oligo-micelle formation of sodium di-isodecyl sulfosuccinate (SDIDS) emulsifier in hydroalcoholic solutions is used to study particle formation of vinyl chloride emulsion polymerization in a batch reactor. The change on micellization behavior was investigated by critical micelle concentration ...
Read More
The condition of oligo-micelle formation of sodium di-isodecyl sulfosuccinate (SDIDS) emulsifier in hydroalcoholic solutions is used to study particle formation of vinyl chloride emulsion polymerization in a batch reactor. The change on micellization behavior was investigated by critical micelle concentration (CMC) and zeta potential parameters. To detect the occurrence of secondary nucleation or particle aggregation, or both the particle size and number of particles were investigated as a criterion for the particle nucleation and growth process. The results showed that the alcohol (co-solvent) content had a strong effect on the oligo-micelles formation and emulsion polymerization performance. Namely, decreasing the alcohol content and increasing the anion content in the SDIDS samples increased the overall reaction rate and latex stability. This also decreased the chain growth rate, the particle size, and the coarse particle formation. Also, the results showed that different condition of oligo-micelle formation would lead to different particle growth history