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ABSTRACT

In this work, the effects of operative parameters on CH4, CO2, O2, and N2 membrane gas separation for poly 
(4-methyl-1-pentane) (PMP) membrane modified by adding nanoparticles of TiO2, ZnO, and Al2O3 are assessed 

and investigated. The operative parameters were type and percentage of nanoparticles, and cross membrane 
pressure. The membrane permeability and selectivity were selected as the responses and indexes of separation 
process performance. To design the experimental layout, design of experiment methodology (DoE) techniques were 
used. Further, the separation process was modeled and simulated using artificial intelligence (AI) methods. So, a 
robust black-box model based on radial basis function (RBF) network was developed and trained with the ability 
for predicting the performance of membrane process. The developed model could simulate the process and predict 
the permeability with R2-validation of 0.9. Finally, it was found that addition of nanoparticles and increasing the 
operative pressure had positive effects on membrane performance. Maximum permeability values for O2, N2, CO2 
and CH4 were 181.58, 52.09, 550.85, and 54.26, respectively. The maximum values of validation-R2 of optimum 
structure for CO2/N2 and CO2/CH4 selectivity were 0.8697 and 0.7028, respectively. Polyolefins J (2020) 7: 91-98
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INTRODUCTION

Gas separation process is usually performed using 
conventional methods such as absorption, adsorption 
and cryogenic distillation. Nowadays, novel technolo-
gies such as membrane process are applied for gas 
separation [1-4]. Since reducing the pollution, power 
consumption, and investment costs are of interest, us-
ing membrane technology in different industries such 
as natural gas sweetening is increasing [5]. In recent 

years, this technology obtained a deep improvement 
compared to the other gas separation methods [6]. 
There are several applications of gas separation in dif-
ferent industries [4, 7]. It is worthwhile noting that 
lower power consumption and operating cost, compact 
structure, ease of maintenance as well as environmen-
tally friendly issues have increased the use of this tech-
nology in various fields of science and engineering [8, 
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9]. 
There are several attempts to increase the perfor-

mance of membrane separation processes, both per-
meability and selectivity. Hassanajili et al. assessed 
the effect of adding metal nanoparticles to polyester 
membranes on the separation of CH4 and CO2. They 
reported that by increasing the silica content, the per-
meability increases. This could be due to the separa-
tion of the molecular chain that resulted in increasing 
the free volume of the polymer network [10]. Further, 
they studied n-C4H10/CH4 separation performance 
by mixed component of poly (4-methyl-1-pentane) 
(PMP) and silica particles. They reported that adding 
the silica component to the PMP polymer matrix could 
increase the selectivity of n-C4H10/CH4 from 13 to 26. 
Similarly, gas permeability would increase from about 
3 to 4 times compared to pure PMP [11]. 

Abedini et al. studied the separation-purification 
of hydrogen using PMP mixed matrix membranes 
embedded by MIL53 (C8H5AlO5) particles. They re-
ported that increasing the MIL53 particle in PMP ma-
trix leads to an increase in hydrogen solubility while 
CO2 solubility decreases, significantly. Also, every 
increase in pressure and the embedding of nanopar-
ticles result in enhancement of the CO2/H2 selectiv-
ity and CO2 permeability [12]. In another research, 
Abedini et al assessed the effect of adding functional-
ized NH2-MIL45 particles on the CO2/CH4 separation 
performance of PMP. They found that any increase in 
particle loading leads to increase of the CO2 perme-
ability and CO2/CH4 selectivity [13]. PMP has the best 
permeability for pure hydrocarbons [14]. So, this sub-
stance is selected to make membranes for gas separa-
tion processes. 

Pechaf et al worked on a composite polymer mem-
brane made from polyimide and zeolite. They made a 
membrane consisted of polyimide and 20 wt% zeolite 
to analyze the permeability of different gases. They 
reported that in this process, the CH4 and CO2 per-
meability would increase, but an adverse effect was 
observed for N2 and O2. These differences in perme-
ability could be explained by the changes in the per-
meability coefficient [15].

Matteucci et al studied the effect of adding TiO2 
nanoparticles to poly (1-trimethylsilyl-1-propyne) on 
the permeability of membranes. They found that add-

ing this nanoparticle would increase the permeability 
up to 4 times [16]. In another study, these researchers 
investigated the effect of adding TiO2 nanoparticles to 
1, 2-polybutadiene (PB). They reported an increase in 
permeability up to 3 times for the membrane containing 
27 vol.% TiO2 nanoparticles in comparison with pure 
membrane. It is found that by addition of the nanopar-
ticles to the polymer, the solubility coefficient would 
increase but the permeability coefficients decrease [17].

The simulation tools developed based on artificial 
intelligence (AI) prepare a suitable environment to 
model the membrane separation processes. These 
models are used in various fields of science and engi-
neering to explain the input-output relations [18-20]. 
The capability in describing the non-linear input-out-
put relations makes this an interesting alternative in 
comparison with conventional methods.

Investigating the previous researches shows that the 
addition of nanoparticle ZnO, Al2O3, and TiO2 to PMP 
membrane has considerable positive effects on mem-
brane performance. So, the main aim of this work is 
to assess the effects of addition of these nanoparticles 
to PMP membrane on advancement of the gas perme-
ation and separation performance in the mixed matrix 
membranes.

In the work of Alihosseini et al., the addition of 
nanoparticle to PMP is deeply investigated through 
design of experiment (DoE) methodology, and the re-
sults were well documented. They utilized a statistical 
modeling method termed as response surface method-
ology (RSM) to assess the effect of adding nanopar-
ticles including zinc oxide (ZnO), aluminum oxide 
(Al2O3) and titanium dioxide (TiO2) to PMP membrane 
on characteristics properties [21]. There are different 
works in different fields of science that have used DoE 
methods for experimental design layout, analysis and 
optimization of the process [22-25].

In this study, AI algorithms were used to model the 
performance of membrane gas separation using the 
data and results of Alihosseini’s work [21]. Next, the 
influences of several operative parameters including 
type of nano particle, percentage of nano particle and 
pressure on the performance of membrane gas sepa-
ration processes were investigated. The membrane 
permeability and selectivity were selected as the re-
sponses and indexes of process performance. 
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To simulate the process using AI, a robust black-box 
model based on radial basis function (RBF) network 
was developed and trained with the ability for pre-
dicting the performance of membrane process. This 
model has the ability for forecasting the membrane 
permeability and selectivity by changing the operative 
parameters of the process over a determined range of 
values without doing conventional excess runs. The 
operative parameters were type and percentage of 
added nanoparticles, and pressure gradient on the both 
side of membrane module. 

EXPERIMENTAL

Materials 
Low molecular weight PMP (purchased from Sigma 
Aldrich) was used as the background phase. The addi-
tive nanoparticles such as ZnO, Al2O3, and TiO2 were 
prepared from Aldrich Chemical Company (Milwau-
kee, USA). The average size of nanoparticles was in 
the range of 20-30 nm. Further, the percentage of these 
nanoparticles was in the range of 5 to 15%. 

Assessment
The performance of conventional (pure) and improved 
membrane was investigated by membrane permeabili-
ty and selectivity. The permeability of pure gases such 
as N2, O2, CH4, and CO2 was measured both for a pure 
and an improved membrane. The membrane perme-
ability is calculated as follows:
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Where, q and l are the flow rate of permeate gas and 
membrane thickness, respectively; p1 and p2 are pres-
sure values in two sides of the membrane, and A is the 
active area of the membrane. The selectivity of the gas 
pairs was calculated by dividing the ratio of the gas 
permeability.

For gas A and B, the membrane selectivity is calcu-
lated as follows:
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Where, PA and PB are the permeability of gas A and B, 
respectively.

Artificial neural network (ANN)
Artificial neural network (ANN) is a useful tool for 
pattern recognition, data clustering and fitting prob-
lems that was developed on the basis of natural ner-
vous system of human kind. This network consists of 
some independent processing elements called neu-
rons. These neurons are connected each other by se-
ries of assigned weights. It is worthwhile noting that 
the prediction performance of a network is dependent 
on the structure and learning process strategies.

Radial basis function (RBF) is a neural network that 
is categorized in feed-forward types. Networks with 
RBF structure consists of three layers. The first layer 
(input layer) is the entrance of network that obtains 
the input values and transfers these values into the 
next hidden layer. The transferring process is done us-
ing transfer functions. In other words, transfer func-
tion is assigned to each neuron in the hidden layer for 
determination of the value of outputs. There are dif-
ferent types of transfer functions. Multilayer neural 
networks usually use sigmoid, linear, and log-sigmoid 
as transfer function. According to the neuron inputs, 
these functions generate output values in the range of 
0 to 1.

Faster learning procedure as well as simpler changes 
in hidden layers in comparison with multi-layer per-
ceptron are the advantages of RBF [26]. The struc-
ture of RBF is characterized through determination of 
mean squared error goal, spread constant, maximum 
neuron numbers, and number of neurons that adding 
between displays. To increase the performance of the 
RBF model, input and output data are normalized by 
the following equation:

min
N

max min

X - XX = 0.9× +0.05
X - X

			   (4)

Where, XN is the normalized operative parameter, X 
is the operative parameter and Xmin and Xmax are the 
values of high and low levels of X, respectively. 

In training any feed-forward net, the usual perfor-
mance function is mean square error (MSE). MSE is 
defined as follow:
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Note, the capability of the network in data prediction 
is assessed by the determination coefficient (R2). This 
index could be calculated as follows:
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Where, ypred. and ytar. are predicted and target outputs, 
respectively. Moreover, n is the number of data.

The probable error in developing a neural network 
model is the occurrence of over-fitting. Over-fitting is 
a situation that the trained model is able to predict the 
target of the training dataset in a manner that the de-
termination coefficient is approaching 1, but the capa-
bility of this network in data prediction of test dataset 
is not acceptable. Decreasing the probability of over-
fitting is of interest. Increasing the size of the training 
dataset (numbers of data) could be an effective option 
in preventing over-fitting. In this study, leave-one-out 
method was used for training the network, which is an 
effective method in decreasing the probability of oc-
currence of this situation. 

In leave-one-out training method, data is classified 
into two datasets (training and validation datasets). 
Training and validation sets contain N-1 and 1 data, 
respectively. Accordingly, first network would be cre-
ated and trained. This procedure will be repeated N 
times in a way that each data will be fallen in valida-
tion group during the N times partitioning. 

Finally, N neural networks will be created in a way 
that each network will be developed and trained, inde-
pendently. So, the predicted target values are hybrid of 
outputs of N networks.

Low molecular weight PMP (purchased from Sig-
ma Aldrich) was used as the background phase. The 
additive nanoparticles such as ZnO, Al2O3, and TiO2 
were prepared from Aldrich Chemical Company (Mil-
waukee, USA). The average size of nanoparticles was 
in the range of 20-30 nm. Further, the percentage of 
these nanoparticles was in the range of 5 to 15%. 

RESULTS AND DISCUSSION

To evaluate the effect of membrane modification with 
nanoparticles and operative parameters on membrane 
performance, DoE was used to develop the layout of 
experiments. The obtained data was analyzed statisti-
cally and analysis of variance (ANOVA) tables were 
assessed for permeability and selectivity of each pair 
of gases. Further, these experimental data were used 
to develop an artificial neural network as a prediction 
model.

In previous work, several permeability and selec-
tivity models for different gasses were developed for 
different nanoparticle additives by using statistical 
methods [21]. In current work, authors focused on de-
veloping an advanced neural network model and sub-
sequent related optimization.  

Model Development

Permeability
In this work, for networks that deal with permeabil-
ity values, maximum number of neurons is set at 20 
and number of neurons to add between displays is 
set at 1. Accordingly, several networks with differ-
ent structures were investigated for permeability of 
oxygen, nitrogen, carbon dioxide, and methane. Each 
network was trained through leave-one-out method as 
explained previously. The preciseness of artificial net-
work was assessed by determination coefficient (R2) 
of validation dataset. Through assessing the different 
structures of networks, it is found that the model de-
veloped for prediction the permeability of oxygen has 
the best forecasting performance with spread constant 
of 2.148. In Table 1, the average values of R2 of vali-
dation dataset of optimum structures of RBF with op-
timum mean squared error goal are shown, while the 
spread constant is 2.148. 

In Figure 1, the permeability predicted by optimized 
RBF has been scattered vs. data generated for differ-
ent gases. As is shown, acceptable distribution around 
the line y=x proves the agreement between the data 
generated by developed neural network model and ex-
perimental data. This developed model can be used to 
predict the permeability only in the determined range 
of operative parameters. 
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In Figure 2 the difference between experimental 
data and data predicted by RBF termed residuals has 
been scattered vs. predicted data by RBF. Random dis-
tribution of residuals is of interest.

In Table 2, the maximum values of permeability for 
different gases that were predicted using the devel-
oped models have been presented. As the table shows, 
maximum values of permeability for O2, N2, CO2 and 
CH4 are equal to 181.58, 52.09, 550.85, and 54.26, 
respectively. This observation shows that addition 
of AL2O3 is more effective than addition of TiO2 and 
ZnO nanoparticles. For O2, N2, and CO2, the optimum 
volume percentage of AL2O3 nanoparticle is 15%; but 
for CH4, this value is 12.41%. Further, the optimum 
operative pressure for O2, N2, and CO2, is 25 bar; but 
for CH4, this value is 21.83 bar.

In Figure 3, the 3-D surfaces of permeability of 
PMP for oxygen vs. pressure and concentration of 

nanoparticles have been plotted for three types of 
nanoparticles. Note that the values of permeability 
were generated using the optimum developed model. 
As shown, by increasing the pressure and percentage 
of nanoparticles, permeability of oxygen gas increas-
es. At constant pressure across the membrane, increas-
ing the nanoparticle content leads to increase the gas 
permeability. It is clear that at high percentage values 
of nanoparticles, increasing the pressure results in in-
crease of permeability; but this routine effect is not 
observed at low values of nanoparticle percentages.

Selectivity
In Table 3, the variation of network performances in 
term of selectivity for different structures of RBF (mean 
squared error goal) for two pairs of gases (CO2/N2 and 

Figure 1. Permeability data predicted by optimized RBF vs. experimental data for (a) oxygen, (b) nitrogen, (c) carbon dioxide, 
and (d) methane. 

Table 1. Maximum R2 of validation dataset for different gases.

Gas Maximum 
validation-R2

Optimum mean 
squared error goal

oxygen
nitrogen
CO2

CH4

0.9188
0.9078
0.8956
0.9176

0.0155
0.0141
0.0155
0.0238

			       (a) 								        (b)

			       (c) 								        (d)

Table 2. Maximum values of permeability of different gases 
for modified PMP.

Gas
Maximum 

permeability 
value

Corresponding conditions
Type of 
nano 

particle

Nanoparticle 
percentage

Operative 
pressure

O2

N2

CO2

CH4

181.58
52.09
550.85
54.26

AL2O3

AL2O3

AL2O3

AL2O3

15
15
15

12.41

25
25
25

21.83
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CO2/CH4) has been shown while the value of spread 
constant is fixed at 2.148. It is found that the prediction 
preciseness of RBF for permeability is higher than that 
for selectivity. As shown, the maximum values of val-
idation-R2 of optimum structure for CO2/N2 and CO2/
CH4 are 0.8697 and 0.7028, respectively.

CONCLUSION

In this study, artificial neural network models based on 

the radial basis function (RBF) were developed to pre-
dict the performance of PMP membrane modified by 
different nanoparticles including TiO2, Al2O3 and ZnO. 
The permeability and selectivity of membrane were 
used to assess the performance of membrane separation 
process. Moreover, the neural networks were validated 
by leave-one-out validation methodology. Several net-
works with different structures were investigated for 
permeability of oxygen, nitrogen, carbon dioxide, and 
methane. The developed model could simulate the pro-
cess and predict the permeability with R2-validation of 

Figure 2. Residual vs. run numbers for (a) oxygen, (b) nitrogen, (c) carbon dioxide, and (d) methane.

			       (a) 								        (b)

			       (c) 								        (d)

Table 3. Validation-R2 for different mean squared error goals for selectivity.

Figure 3. Predicted nitrogen permeability for (a) TiO2, (b) ZnO, and (c) AL2O3.

		   (a) 				              (b)				        (c)

Mean squared error goal 0.01 0.013 0.017 0.02 0.023 0.027 0.03 0.033 0.037 0.04
Validation-R2 CO2/N2

CO2/CH4

0.8697
0.7028

0.8422
0.6714

0.8175
0.6494

0.8078
0.6494

0.6967
0.6494

0.6596
0.6494

0.6863
0.6494

0.6861
0.6494

0.6861
0.6494

0.6861
0.6494
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0.9. Through assessing the different structures of net-
works, it was found that the model developed for pre-
diction of oxygen permeability has the best forecasting 
performance with spread constant of 2.148. In addition, 
by increasing the concentration of added nanoparticles, 
membrane permeability advanced. It was demonstrated 
that the prediction preciseness of RBF for permeabil-
ity was higher than that for selectivity. It was revealed 
that the addition of AL2O3 has better result in compar-
ison with the addition of other nanoparticles. For O2, 
N2, and CO2, the optimum value of volume percentage 
of nanoparticle was 15%; but for CH4, this value was 
12.41%. Further, for O2, N2, and CO2, the pressure of 25 
bar led to optimum result; but for CH4, this value was 
21.83 bar. 
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