At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second or third order. An ideal gas consists of single translating and rotating molecules. α phase consists of rotating single molecules and rotating molecular pairs and it exists when the volume V is reduced to Vc
Miller SA (1969) Ethylene and its industrial derivates. BENN
Hunter E (1957) Polythene: The reaction kinetics of ethylene polymerization. Iliffe and Sons, Ch. 3
Stoiljković D (1978) Uticaj fizičko-hemijskog stanja etilena na mehanizam i kinetiku polimerizacije po tipu slobodnih radikala pri visokom pritisku (Effect of physico-chemical state of ethylene on mechanism and kinetics of free radical polymerization at high pressure). MSci Thesis, Faculty of Technology and Metallurgy, University of Belgrade
Stoiljković D (1981) Mehanizam i kinetika polimerizacije etilena pri visokom pritisku (Mechanism and Kinetics of Ethylene Polymerization Under High Pressure). PhD thesis, Faculty of Technology and Metallurgy, University of Belgrade
Dick WFL, Hedley AGM (1956) Thermodynamic function of gases, Butherworths, Vol. 2
Benson SW (1960) The foundations of chemical kinetics, Mc Graw-Hill
Onsager L (1949) The effects of shape on the interaction of colloidal particles, Ann NY Acad Sci 51: 627-659
Kikoin A, Kikoin I (1978) Molecular physics, Mir
Reid RC, Prausnitz JM, Scherwood TK (1977) The properties of gases and liquids, Mc Graw- Hill
Stoiljković D, Jovanović S (1981) The mechanism of the high pressure free-radical polymerization of ethylene. J Polym Sci Polymer Chem Ed 19: 741-747
Stoiljković D, Jovanović S (1982) Einfluss der Änderung des Ordnungsgrades des Ethylens mit der Druckerhöhung auf den Verlauf der Radikalischen Polymerisation. Angew Makromol Chem 106:195-205
Haugh EF, Hirschfelder JO (1955) Pi‐electron forces between conjugated double bond molecules. J Chem Phys 23: 1778-1796
Hashimoto M, Hashimoto M, Isobe T (1971) On the factors determining the molecular arrangement in crystalline ethylene. Bull Chem Soc Japan 44: 3230-3232
Wormer PES, van der Avoird A (1975) Ab initio valence‐bond calculations of the van der Waals interactions between π systems: The ethylene dimer. J Chem Phys 62: 3326-3339
Rytter E, Gruen DM (1979) Infrared spectra of matrix isolated and sold ethylene. Formation of ethylene dimers. Spectrochemica Acta 35a: 199- 207
Kihara T (1978) Intermolecular Forces, J Wiley and Sons
Tsiklis DS (1977) Plotnie gazi (The High Density Gases), Khimiya, Moskva
Stoiljkovic D (2007) Importance of Boscovich's theory of natural philosophy for polymer science. Polimery 52: 804-810
Stoiljkovich D (2014) Roger Boscovich - The founder of modern science”, Lulu-publishing; translated from original (2011) Ruđer Bošković – utemeljivač savremene nauke. Petnica Reseasrch Center
Stoiljković D, Radičević R, Korugić-Karasz LJ, Jašo V, Jovanović S (2015) Supermolecular structure of liquids and compressed gases based on Boscovich’s comprehensions, https://www. researchgate.net/profile/Dragoslav_Stoiljkovic/ contributions
Stoiljkovic D (2018) Attraction and repulsion in polymer science. Part VI. Supramolecular organization of liquid monomers (in Serbian language). Svet polimera 21: 9–13
Weale KE (1967) Chemical reaction at high pressures, SPON, 47
Smoluchowski R (1967) Handbook of physics: Phase transitions in solids, Mc Graw-Hill, Ch. 8, 97-111
Benzler H, Koch A (1955) Ein Zustandsdiagramm für Äthylen bis zu 10000 ata Druck. Chem-Ing Techn 27: 71
Wunderlich B, Baur H (1970) Fortsch Hochpolym Forschung 7: 151
Stoiljković D, Jovanović S (1981) Mechanism of the short chain branching in low density polyethylene. Makromol Chem 182: 2811-2820
Stoiljković D, Jovanović S (1984) Origin of the molecular structure and properties of low density polyethylene. Brit Polymer J 16: 291-300
Stoiljković D, Jovanović S (1988) Supermolecular organization and polymerization of compressed ethylene. Acta Polymerica 39: 670-676
Sass A, Dodge BF, Bretton RH (1967) Compressibility of gas mixtures. Carbon dioxide-ethylene system. J Chem Eng Data 12: 168
Gleston S (1967) Udžbenik fizičke hemije. Naučna knjiga
Michels A, Botzen A, de Groot SR (1947) Refractive index and Lorentz-Lorenz function of ethylene up to 2300 atmospheres at 25°C and 100°C. Physica’s Grav 13: 343-348
Hamann SD (1957) Physico-chemical effects of pressure, Butherworths
Stoiljkovich D, Jovanovich S (1980) Stereochemical aspect of free-radical polymerization of ethylene. In: IUPAC Symposium on Macromolecular Chemistry. Florence, Italy: Vol. 2, 107-110
Kargin VA, Kabanov VA (1964) Polimerizatsiya v strukturirovannykh sistemakh. Zh Vses Khim. Obshch. im. DI Mendeleeva 9: 602
Stoiljković D (1979) Dialectical-materialistic foundations of Savich-Kashanin theory about the behaviour of matter at high pressures and origin of rotation of sky bodies (in Serbian language). Dijalektika 14: 137-157
Stoiljković D, Pilić B, Radičević R, Bakočević I, Jovanović S, Panić D, Korugić-Karasz LJ (2004) Polymerization of organized monomers. Hem ind 58: 479-486
Stoiljković D, Jovanović S (1985) Comments on the articles: Thermisch und UV-photochemisch initiierte Hochdruckpolymerisation des Ethylens. Makromol Chem 186: 671-674
Stoiljković D, Radičević R, Janković M (1999) Dependence of the structural parameters and properties of low density polyethylene on the synthesis conditions. J Serb Chem Soc 64: 577- 587
Stoiljković D, Damjanović B, Đorđević J, Špehar D, Jovanović S (2006) Compressed ethylene phase states and their importance for the production of low density polyethylene. Hem ind 60: 283-286
Stoiljković D, Jovanović S, Đorđević J, Damjanović B (2007) Decompositions in the production of low density polyethylene - reasons, consequences and prevention (in Serbian language). Hem ind 61: 357-363
Wiley RH, Lipscomb NT, Johnston FJ, Guillet JE (1962) Kinetics of the γ‐radiation‐induced polymerization of ethylene. J Polym Sci 57: 867- 879
Golosov AP, Terteryan RA, Monastirskii VN (1973) Primenenie initsiatorov pri nizkotemperaturnoy polimerizatsii etilena. Neftekhim i neftepererab No 7: 23-25
Luft G, Bitch H, Seidl H (1977) Effectiveness of organic peroxide initiators in the high-pressure polymerization of ethylene. J Macromol Sci- Chem A11: 1089-112
Radičević R, Korugić LJ, Stoiljković D, Jovanović S (1995) Supermolecular organization and characteristic moments of the polymerization of methyl methacrylate. J Serb Chem Soc 60: 347-363
Pilic B, Stoiljkovic D, Jovanovic S, Panic D, Korugic-Karasz LJ (2004) New percolation theory and simulation of Ziegler-Natta polymerization. Part I. Fundamentals, https:// www.researchgate.net/profile/Dragoslav_ Stoiljkovic
Machi S, Kawakami W, Yamaguchi K, Hagiwara M, Sugo T (1968) Structure and properties of polyethylene produced by γ‐radiation polymerization in flow system. J Appl Polym Sci 12: 2639-2647
Kodama S, Matsushima Y, Ueoshi A, Shmidzu T, Kagiya Y, Yuasa S, Fukui K (1959) High pressure polymerization of ethylene. A kinetic study of polymerization initiated by 2,2′‐ azobisisobutyronitrile. J Polym Sci 41: 83-95
Mortimer GA, Hamner WF (1964) Density of polyethylene. J Polym Sci Part A2: 1301-1309
Luft G (1976) Kinetische Aspekte von Hochdruckreaktionen. Chem-Ing Techn 48: 529- 532
Stoiljković D, Macanović R, Pošarac D (1995) The correlation between characteristic volumes of matter - a mathematical model and its physical meaning. J Serb Chem Soc 60: 15-25
Artemenko S, Krijgsman P, Mazur C (2017) The Widom line for supercritical fluids. J Molecular Liquids 238: 122-128
Prescher C, Fomin YuD, Prakapenka VB, Stefanski J, Trachenko K, Brazhkin VV (2017) Experimental evidence of the Frenkel line in supercritical neon. Phys Rev B 95: 134114- 134117
Korolev GV, Mogilevich MM, Ily’in AA (2002) Assotsiatsiya zhidkikh organicheskikh soedinenii: vliyanie na fizicheskie svoistva i polimerizatsionnye protsessy, Mir
Radičević R, Stoiljković D, Budinski-Simendić J (2007) Study of the isothermal free radical polymerization of some higher n-alkyl methacrylates. J Therm Anal Calorim 90: 243- 247
Jašo V, Stoiljković D, Radičević R, Bera O (2013) Kinetic modelling of bulk free radical polymerization of methyl methacrylate. Polymer J 45: 631-636
Bera O, Radičević R, Stoiljković D, Jovičić M, Pavličević J (2011) A new approach for the kinetic modeling of free radical bulk polymerization of styrene. Polymer J 43: 826-831
Bera O, Pavličević J, Jovičić M, Stoiljković D, Pilić B, Radičević R (2012) The influence of nanosilica on styrene free radical polymerization kinetics. Polym Compos 33: 262-266
Kolasinski KW (2002) Surface science - Foundations of catalysis and nanoscience, J. Wiley and Sons, Ch 6
Stoiljković D, Pilić B, Jovanović S, Panić D (2004) New percolation theory and simulation of Ziegler-Natta polymerization. Part I. Fundamentals. Ch. 20. 135-142. In: Terano M (Ed) Current achievements on heterogeneous olefin polymerization catalysts, Sankeisha Co.
Pilić B, Stoiljković D, Bakočević I, Jovanović S, Panić D, Korugić-Karasz LJ (2005) Charge percolation mechanism of Ziegler-Natta polymerization: Part II. Importance of support nano-particles. In: ACS Symp Series 916: 215- 228
Stoiljkovic, D., Jovanović, S. (2019). 'Compression, supramolecular organization and free radical polymerization of ethylene gas', Polyolefins Journal, 6(1), pp. 23-41. doi: 10.22063/poj.2018.2252.1117
VANCOUVER
Stoiljkovic, D., Jovanović, S. Compression, supramolecular organization and free radical polymerization of ethylene gas. Polyolefins Journal, 2019; 6(1): 23-41. doi: 10.22063/poj.2018.2252.1117