Compression, supramolecular organization and free radical polymerization of ethylene gas

Document Type : Review

Authors

1 University of Novi Sad, Faculty of Technology, Novi Sad, Serbia

2 University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Abstract

At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second or third order. An ideal gas consists of single translating and rotating molecules. α phase consists of rotating single molecules and rotating molecular pairs and it exists when the volume V is reduced to Vc

Keywords


  1. Miller SA (1969) Ethylene and its industrial derivates. BENN
  2. Hunter E (1957) Polythene: The reaction kinetics of ethylene polymerization. Iliffe and Sons, Ch. 3
  3. Stoiljković D (1978) Uticaj fizičko-hemijskog stanja etilena na mehanizam i kinetiku polimerizacije po tipu slobodnih radikala pri visokom pritisku (Effect of physico-chemical state of ethylene on mechanism and kinetics of free radical polymerization at high pressure). MSci Thesis, Faculty of Technology and Metallurgy, University of Belgrade
  4. Stoiljković D (1981) Mehanizam i kinetika polimerizacije etilena pri visokom pritisku (Mechanism and Kinetics of Ethylene Polymerization Under High Pressure). PhD thesis, Faculty of Technology and Metallurgy, University of Belgrade
  5. Dick WFL, Hedley AGM (1956) Thermodynamic function of gases, Butherworths, Vol. 2
  6. Benson SW (1960) The foundations of chemical kinetics, Mc Graw-Hill
  7. Onsager L (1949) The effects of shape on the interaction of colloidal particles, Ann NY Acad Sci 51: 627-659
  8. Kikoin A, Kikoin I (1978) Molecular physics, Mir
  9. Reid RC, Prausnitz JM, Scherwood TK (1977) The properties of gases and liquids, Mc Graw- Hill
  10. Ribnikar SV (1971) Molekularni aspekt fizičke hemije, BIGZ
  11. Berthod H (1961). Ann Chim 6: 286
  12. Stoiljković D, Jovanović S (1981) The mechanism of the high pressure free-radical polymerization of ethylene. J Polym Sci Polymer Chem Ed 19: 741-747
  13. Stoiljković D, Jovanović S (1982) Einfluss der Änderung des Ordnungsgrades des Ethylens mit der Druckerhöhung auf den Verlauf der Radikalischen Polymerisation. Angew Makromol Chem 106:195-205
  14. Haugh EF, Hirschfelder JO (1955) Pi‐electron forces between conjugated double bond molecules. J Chem Phys 23: 1778-1796
  15. Hashimoto M, Hashimoto M, Isobe T (1971) On the factors determining the molecular arrangement in crystalline ethylene. Bull Chem Soc Japan 44: 3230-3232
  16. Wormer PES, van der Avoird A (1975) Ab initio valence‐bond calculations of the van der Waals interactions between π systems: The ethylene dimer. J Chem Phys 62: 3326-3339
  17. Rytter E, Gruen DM (1979) Infrared spectra of matrix isolated and sold ethylene. Formation of ethylene dimers. Spectrochemica Acta 35a: 199- 207
  18. Kihara T (1978) Intermolecular Forces, J Wiley and Sons
  19. Tsiklis DS (1977) Plotnie gazi (The High Density Gases), Khimiya, Moskva
  20. Stoiljkovic D (2007) Importance of Boscovich's theory of natural philosophy for polymer science. Polimery 52: 804-810
  21. Stoiljkovich D (2014) Roger Boscovich - The founder of modern science”, Lulu-publishing; translated from original (2011) Ruđer Bošković – utemeljivač savremene nauke. Petnica Reseasrch Center
  22. Stoiljković D, Radičević R, Korugić-Karasz LJ, Jašo V, Jovanović S (2015) Supermolecular structure of liquids and compressed gases based on Boscovich’s comprehensions, https://www. researchgate.net/profile/Dragoslav_Stoiljkovic/ contributions
  23. Stoiljkovic D (2018) Attraction and repulsion in polymer science. Part VI. Supramolecular organization of liquid monomers (in Serbian language). Svet polimera 21: 9–13
  24. Weale KE (1967) Chemical reaction at high pressures, SPON, 47
  25. Smoluchowski R (1967) Handbook of physics: Phase transitions in solids, Mc Graw-Hill, Ch. 8, 97-111
  26. Benzler H, Koch A (1955) Ein Zustandsdiagramm für Äthylen bis zu 10000 ata Druck. Chem-Ing Techn 27: 71
  27. Wunderlich B, Baur H (1970) Fortsch Hochpolym Forschung 7: 151
  28. Stoiljković D, Jovanović S (1981) Mechanism of the short chain branching in low density polyethylene. Makromol Chem 182: 2811-2820
  29. Stoiljković D, Jovanović S (1984) Origin of the molecular structure and properties of low density polyethylene. Brit Polymer J 16: 291-300
  30. Stoiljković D, Jovanović S (1988) Supermolecular organization and polymerization of compressed ethylene. Acta Polymerica 39: 670-676
  31. Sass A, Dodge BF, Bretton RH (1967) Compressibility of gas mixtures. Carbon dioxide-ethylene system. J Chem Eng Data 12: 168
  32. Gleston S (1967) Udžbenik fizičke hemije. Naučna knjiga
  33. Michels A, Botzen A, de Groot SR (1947) Refractive index and Lorentz-Lorenz function of ethylene up to 2300 atmospheres at 25°C and 100°C. Physica’s Grav 13: 343-348
  34. Hamann SD (1957) Physico-chemical effects of pressure, Butherworths
  35. Stoiljkovich D, Jovanovich S (1980) Stereochemical aspect of free-radical polymerization of ethylene. In: IUPAC Symposium on Macromolecular Chemistry. Florence, Italy: Vol. 2, 107-110
  36. Stoiljkovic D, Jovanovic S, Pilic B, Radicevic R, Korugic-Karasz LJ (2007) Olefins self-organization and polymerization explained by Kargin-Kabanov theory. Fiziko-khimiya polimerov 13:, 185-190
  37. Kargin VA, Kabanov VA (1964) Polimerizatsiya v strukturirovannykh sistemakh. Zh Vses Khim. Obshch. im. DI Mendeleeva 9: 602
  38. Stoiljković D (1979) Dialectical-materialistic foundations of Savich-Kashanin theory about the behaviour of matter at high pressures and origin of rotation of sky bodies (in Serbian language). Dijalektika 14: 137-157
  39. Stoiljković D, Pilić B, Radičević R, Bakočević I, Jovanović S, Panić D, Korugić-Karasz LJ (2004) Polymerization of organized monomers. Hem ind 58: 479-486
  40. Stoiljković D, Jovanović S (1985) Comments on the articles: Thermisch und UV-photochemisch initiierte Hochdruckpolymerisation des Ethylens. Makromol Chem 186: 671-674
  41. Stoiljković D, Radičević R, Janković M (1999) Dependence of the structural parameters and properties of low density polyethylene on the synthesis conditions. J Serb Chem Soc 64: 577- 587
  42. Stoiljković D, Damjanović B, Đorđević J, Špehar D, Jovanović S (2006) Compressed ethylene phase states and their importance for the production of low density polyethylene. Hem ind 60: 283-286
  43. Stoiljković D, Jovanović S, Đorđević J, Damjanović B (2007) Decompositions in the production of low density polyethylene - reasons, consequences and prevention (in Serbian language). Hem ind 61: 357-363
  44. Wiley RH, Lipscomb NT, Johnston FJ, Guillet JE (1962) Kinetics of the γ‐radiation‐induced polymerization of ethylene. J Polym Sci 57: 867- 879
  45. Golosov AP, Terteryan RA, Monastirskii VN (1973) Primenenie initsiatorov pri nizkotemperaturnoy polimerizatsii etilena. Neftekhim i neftepererab No 7: 23-25
  46. Luft G, Bitch H, Seidl H (1977) Effectiveness of organic peroxide initiators in the high-pressure polymerization of ethylene. J Macromol Sci- Chem A11: 1089-112
  47. Radičević R, Korugić LJ, Stoiljković D, Jovanović S (1995) Supermolecular organization and characteristic moments of the polymerization of methyl methacrylate. J Serb Chem Soc 60: 347-363
  48. Pilic B, Stoiljkovic D, Jovanovic S, Panic D, Korugic-Karasz LJ (2004) New percolation theory and simulation of Ziegler-Natta polymerization. Part I. Fundamentals, https:// www.researchgate.net/profile/Dragoslav_ Stoiljkovic
  49. Machi S, Kawakami W, Yamaguchi K, Hagiwara M, Sugo T (1968) Structure and properties of polyethylene produced by γ‐radiation polymerization in flow system. J Appl Polym Sci 12: 2639-2647
  50. Kodama S, Matsushima Y, Ueoshi A, Shmidzu T, Kagiya Y, Yuasa S, Fukui K (1959) High pressure polymerization of ethylene. A kinetic study of polymerization initiated by 2,2′‐ azobisisobutyronitrile. J Polym Sci 41: 83-95
  51. Mortimer GA, Hamner WF (1964) Density of polyethylene. J Polym Sci Part A2: 1301-1309
  52. Luft G (1976) Kinetische Aspekte von Hochdruckreaktionen. Chem-Ing Techn 48: 529- 532
  53. Stoiljković D, Macanović R, Pošarac D (1995) The correlation between characteristic volumes of matter - a mathematical model and its physical meaning. J Serb Chem Soc 60: 15-25
  54. Artemenko S, Krijgsman P, Mazur C (2017) The Widom line for supercritical fluids. J Molecular Liquids 238: 122-128
  55. Prescher C, Fomin YuD, Prakapenka VB, Stefanski J, Trachenko K, Brazhkin VV (2017) Experimental evidence of the Frenkel line in supercritical neon. Phys Rev B 95: 134114- 134117
  56. Korolev GV, Mogilevich MM, Ily’in AA (2002) Assotsiatsiya zhidkikh organicheskikh soedinenii: vliyanie na fizicheskie svoistva i polimerizatsionnye protsessy, Mir
  57. Radičević R, Stoiljković D, Budinski-Simendić J (2000) Characteristic events in free radical polymerization of lower n-alkyl methacrylates. J Therm Anal Calorim 62: 237-249
  58. Radičević R, Stoiljković D, Budinski-Simendić J (2007) Study of the isothermal free radical polymerization of some higher n-alkyl methacrylates. J Therm Anal Calorim 90: 243- 247
  59. Jašo V, Stoiljković D, Radičević R, Bera O (2013) Kinetic modelling of bulk free radical polymerization of methyl methacrylate. Polymer J 45: 631-636
  60. Bera O, Radičević R, Stoiljković D, Jovičić M, Pavličević J (2011) A new approach for the kinetic modeling of free radical bulk polymerization of styrene. Polymer J 43: 826-831
  61. Bera O, Pavličević J, Jovičić M, Stoiljković D, Pilić B, Radičević R (2012) The influence of nanosilica on styrene free radical polymerization kinetics. Polym Compos 33: 262-266
  62. Kolasinski KW (2002) Surface science - Foundations of catalysis and nanoscience, J. Wiley and Sons, Ch 6
  63. Stoiljković D, Pilić B, Jovanović S, Panić D (2004) New percolation theory and simulation of Ziegler-Natta polymerization. Part I. Fundamentals. Ch. 20. 135-142. In: Terano M (Ed) Current achievements on heterogeneous olefin polymerization catalysts, Sankeisha Co.
  64. Pilić B, Stoiljković D, Bakočević I, Jovanović S, Panić D, Korugić-Karasz LJ (2005) Charge percolation mechanism of Ziegler-Natta polymerization: Part II. Importance of support nano-particles. In: ACS Symp Series 916: 215- 228