Study of Ziegler-Natta/(2-PhInd)2ZrCl2 hybrid catalysts performance in slurry propylene polymerization

Document Type: Original research

Authors

1 Department of Polymer engineering, School of Chemical and Material Engineering, Islamic Azad University (Shiraz Branch), P.O. Box. 71993-3, Shiraz, Iran

2 Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran

3 Petrochemical Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran

4 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad, Iran

5 Catalyst Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran

6 The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA

Abstract

Several types of hybrid catalysts are made through mixing of 4th generation Ziegler-Natta (ZN) and (2-PhInd)2ZrCl metallocene catalysts using triethylaluminum (TEA) as coupling agent. Response surface methodology (RSM) is used to evaluate the interactive effects of different parameters including amounts of metallocene and TEA and temperature on metallocene loading. Analyzing the amounts of Al and Zr elements in the hybrid catalysts through ICP-OES and EDXA reveals that temperature plays a crucial role on anchoring of the metallocene catalyst on ZN while TEA has the least determining effect. The ICP analysis shows that as the concentration of Al goes up in the hybrid catalyst the concentration of Zr passes a maximum, while EDXA shows a direct relationship between the Al and Zr contents. Using triisobutylaluminum (TIBA) and methylaluminoxane (MAO) as the coupling agents, almost similar metallocene loadings are observed. Finally, the performance of hybrid catalysts is investigated in propylene polymerization and the obtained polymers are characterized using DSC and DMTA through which the presence of two types of polymers in the final product are confirmed.

Keywords

Main Subjects


  1. Severn JR, Chadwick JC, Duchateau R, Friederichs N (2005) Bound but not gagged immobilizing single-site α-olefin polymerization catalysts. Chem Rev 105: 4073-4147
  2. Du J, Niu H, Dong JY, Dong X, Han CC (2008) Self- similar growth of polyolefin alloy particles in a single granule multi-catalyst reactor. Adv Mater 20: 2914-2917
  3. Ahmadi M, Jamjah R, Nekoomanesh M, Zohuri GH, Arabi H (2007) Ziegler-Natta/metallocene hybrid catalyst for ethylene polymerization. Maromol React Eng 1: 604-610
  4. Hong SC, Mihan S, Lilge D, Delux L, Rief U (2007) Immobilized Me2Si(C5Me4)(N-tBu)TiCl2/ (nBuCp)2ZrCl2 hybrid metallocene catalyst system for the production of poly(ethylene-cohexene) with pseudo-bimodal molecular weight and inverse comonomer distribution. Polym Eng Sci 47: 131-139
  5. Lu L, Fan H, Li BG, Zhu S (2009) Polypropylene and ethylene-propylene copolymer reactor alloys prepared by metallocene/Ziegler-Natta hybrid catalyst. Ind Eng Chem Res 48: 8349-8355
  6. Cho HS, Chung JS, Lee WY (2000) Control of molecular weight distribution for polyethylene catalyzed over Ziegler-Natta/metallocene hybrid and mixed catalysts. J Mol Catal A: Chem 159: 203-213
  7. Cho HS, Choi YH, Lee WY (2000) Characteristics of ethylene polymerization over Ziegler–Natta/ metallocene catalysts comparison between hybrid and mixed catalysts. Catal Today 63: 523-530
  8. Forte MMC, Cunha FOV, Santos JHZ (2001) Characterization and evaluation of the nature of chemical species generated in hybrid Ziegler- Natta/metalocene catalyst. J Mol Catal A 175: 91-103
  9. Forte MMC, Cunha FOV, Santos JHZ, Zacca JJ (2003) Ethylene and 1-butene copolymerization catalyzed by a Ziegler–Natta/metallocene hybrid catalyst through a 23 factorial experimental design. Polymer 44: 1377-1384
  10. Galli P, Collina G, Sgarzi P, Baruzzi G, Marchetti E (1997) Combining Ziegler-Natta and metallocene catalysis: new heterophasic propylene copolymers from the novel multicatalyst reactor granule technology J Appl Polym Sci 66: 1831-1837
  11. Liu J, Dong JY, Cui N, Hu Y (2004) Supporting a metallocene on functional polypropylene granules for slurry ethylene polymerization. Macromolecules 37: 6275-6282
  12. Wu L, Wanke SE (2010) In: Hoff R, Mathers RT (eds) Handbook of transition metal polymerization catalysts, J. Wiley & Sons, Hoboken, New Jersy
  13. Fu Z, Xu J, Zhang Y, Fan Z (2005) Chain structure and mechanical properties of polyethylene/ polypropylene/poly(ethylene-co-propylene) in-reactor alloys synthesized with a spherical Ziegler- Natta catalyst by gas-phase polymerization. J Appl Polym Sci 97: 640-647
  14. Lόpez-Linares F, Barrios AD, Ortega H, Matos JO, Joskowicz P, Agrifoglio G (2000) Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler-Natta and metallocene/MAO catalyst system. J Mol Catal A: Chem 159: 269-272
  15. Cho HS, Choi DJ, Lee WY (2000) Polymerization of ethylene and ethylene/1-hexene over Ziegler- Natta/metallocene hybrid catalysts supported on SiO2 prepared by a sol-gel method. J Appl Polym Sci 78: 2318-2326
  16. Du J, Niu H, Dong JY, Dong X, Wang D, He A, Han CC (2008) Nascent phase separation and crystallization kinetics of an iPP/PEOc polymer alloy prepared on a single multi-catalyst reactor granule. Macromolecules 41: 1421-1429
  17. Du J, Zhang X, Han CC (2009) Fluctuation assisted crystallization of an iPP/PEOc polymer alloy prepared on single multi-catalyst reactor granule. J Polym Sci Part B: Polym Phys 47: 166- 172
  18. Santos JHZ, Gerbase AE, Rodenbusch KC, Pires GP, Martinelli M, Bichinho KM (2002) Hybrid supported zirconocene and niobocene catalysts on MAO-modified silicas. J Mol Catal A: Chem 184: 167-173
  19. Silveria F, Loureiro SR, de Galland GB, Stedile FC, dos Santos JHZ, Teranishi T (2003) Hybrid zirconocene supported catalysts. J Mol Catal A: Chem 206: 389-398
  20. Marquez MFV, Chaves EG (2003) Polypropylene fractions produced by binary metallocene catalysts. J Polym Sci Part A: Polym Chem 41: 1478-1485
  21. Bastos QC, Marquez MFV (2005) Polypropylene reactor mixtures obtained with homogeneous and supported catalysts. J Polym Sci Part A: Polym Chem 43: 263-272
  22. Marquez MFV, Pombo CC, Silva RA, Conte A (2002) Supported stereospecific metallocene binary catalyst for propylene polymerization. J Polym Sci Part A: Polym Chem 40: 2979-2986
  23. Marquez MFV, Pombo CC, Silva RA, Conte A (2003) Binary metallocene supported catalyst for propylene polymerization. Eur Polym J 39: 561- 567
  24. Marques MFV, Conte A (2006) Propylene polymerization using combined syndio and isospecific metallocene catalysts supported on silica/MAO J Appl Polym Sci 99: 628-637
  25. Tynys A, Saarinen T, Bartke M, Lofgren B (2007) Propylene polymerisations with novel heterogenous combination metallocene catalyst systems. Polymer 48: 1893-1902
  26. Li W, Wang J, Jiang B, Yanga Y, Jieb Z (2010) Ethylene polymerization with hybrid nickel diimine/Cp2TiCl2 catalyst: A new method to prepare blends of linear and branched polyethylene. Polym Int 59: 617-623
  27. Choi Y, Soares JBP (2010) Supported hybrid early and late transition metal catalysts for the synthesis of polyethylene with tailored molecular weight and chemical composition distributions. Polymer 51: 4713-4725
  28. Kunrath FA, Souza RF, Mauler RS, Casagrande Junior OL (2002) Synthesis and properties of branched polyethylene/high-density polyethylene blends using a homogeneous binary catalyst system composed of early and late transition metal complexes. Macromol Chem Phys 203: 2058-2068
  29. Mota FF, Mauler RS, Souza RF, Casagrande Junior OL (2001) Tailoring polyethylene characteristics using a combination of nickel α-diamine and zirconocene catalysts under reactor blending conditions. Macromol Chem Phys 202: 1016- 1020
  30. Mota FF, Mauler RS, Souza RF, Casagrande Junior OL (2003) Production of LPE/BPE blends using homogeneous binary catalyst system: influence of the polymerization parameters on polymer properties. Polymer 44: 4127-4133
  31. Ye Z, Zhu S (2003) Synthesis of branched polypropylene with isotactic backbone and atactic side chains by binary iron and zirconium single-site catalysts. J Polym Sci Part A: Polym Chem 41: 1152-1159
  32. Pan L, Zhang KY, Li YG, Bo SQ, Li YS (2007) Thermal and crystallization behaviors of polyethylene blends synthesized by binary late transition metal catalysts combinations. J Appl Polym Sci 104: 4188-4198
  33. Nassiri H, Arabi H, Hakim S, Bolandi S (2011) Polymerization of propylene with Ziegler-Natta catalyst: optimization of operating conditions by response surface methodology. Polym Bull 67: 1393-1411
  34. Coates GW, Waymouth RM (1995) Oscillating stereocontrol in the polymerization of propylene: a new strategy for the synthesis of thermoplastic elastomeric polypropylene. Science 267: 217-218
  35. Nejabat GR, Nekoomanesh M, Arabi H, Salehi- Mobarakeh H, Zohuri GH, Omidvar M, Miller SA (2012) Synthesis of stereoblock elastomeric poly(propylene)s using a (2-PhInd)2ZrCl2 metallocene catalyst in the presence of co-catalyst mixtures, 1-study of activity and molecular weight. Macromol React Eng 6: 523-529
  36. Lin S, Kravchenko R, Waymouth RM (2000) Ethylene and hydrogen effects in propylene polymerization with 2-arylindenyl zirconocenes. J Mol Catal A: Chem 158: 423-427
  37. Mortazavi SMM, Arabi H, Zohuri GH, Ahmadjo S, Nekoomanesh M, Ahmadi M, (2010) Copolymerization of ethylene/α-olefins using bis(2 phenylindenyl) zirconium dichloride metallocene catalyst: structural study of comonomer distribution. Polym Int 59: 1258- 1265
  38. Ahmadjo S, Arabi H, Nekoomanesh M, Mortazavi SMM, Zohuri GH, Ahmadi M, Bolandi S (2011) Indirect synthesis of bis(2-PhInd)ZrCl2 metallocene catalyst, kinetic study and modeling of ethylene polymerization. Chem Eng Technol 34: 249-256
  39. Arabi H, Salehi-Mobarakeh H, Balzadeh Z, Nejabat GR (2013) Copolymerization of ethylene/5-ethylidene-2-norbornene with bis (2-phenylindenyl) zirconium dichloride catalyst: I. optimization of the operating conditions by response surface methodology J Appl Polym Sci 129: 3047
  40. Nejabat GR, Nekoomanesh M, Arabi H, Salehi- Mobarakeh H, Zohuri GH, Omidvar M, Miller SA (2013) Synthesis and microstructural study of stereoblock elastomeric polypropylenes from metallocene catalyst (2-PhInd)2ZrCl2 activated with cocatalyst mixtures. J Polym Sci Part A: Polym Chem 51: 724-731
  41. Yadav MK, Gupta VK (2009) Proton NMR studies of supported Titanium catalyst for quantification of incorporated internal electron donor. Eurasian J Anal Chem 4: 270-275
  42. Kurata M, Tsunashima Y (1999) In: Brandrup J, Immergut EH, Grulke EA (Eds) Polymer Handbook, 4th edn, J. Wiley & Sons, New York
  43. Kissin YV, Liu X, Pollick DJ, Brungard NL, Chang M (2008) Ziegler-Natta catalysts for propylene polymerization: chemistry of reactions leading to the formation of active centers. J Mol Catal A 287: 45-52
  44. Bahri-Laleh N, Correa A, Mehdipour-Ataei S, Arabi H, Nekoomanesh-Haghighi M, Zohuri GH, Cavallo L (2011) Moving up and down the Titanium oxidation state in Ziegler-Natta catalysis. Macromolecules 44: 778-783
  45. Wang Q, Murayama N, Liu B, Terano M (2005) Effects of electron donors on active sites distribution of MgCl2-supported Ziegler-Natta catalysts investigated by multiple active sites model. Macroml Chem Phys 206: 961-966