Polymeric foams
Mohammad Nourmohammadi; Reza Jahanmardi; Hamid Moeenfard; Gholamhossein Zohuri; Saeed Bazgir
Abstract
Novel EPDM-based polymer foams were prepared using a combination of nanomaterials, namely nano silica, nano clay, and graphene nanoplatelets. In order to achieve optimal acoustic performance, the Taguchi design (TD) technique was applied to reduce the number of experiments and optimize the formulation. ...
Read More
Novel EPDM-based polymer foams were prepared using a combination of nanomaterials, namely nano silica, nano clay, and graphene nanoplatelets. In order to achieve optimal acoustic performance, the Taguchi design (TD) technique was applied to reduce the number of experiments and optimize the formulation. By employing an orthogonal array of L9(34), four controlled factors, including content of the three nanomaterials and the blowing agent (Unicell D200A), were chosen. In practice, the acoustic properties of the nine suggested experiments with TD were examined with an impedance tube, and the signal-to-noise ratio analysis revealed two more optimal formulations for foam composites. Further experiments for the last two formulations compared to the nine Taguchi tests, showed an improvement of 13.04 and 19.68%, respectively, for noise reduction coefficient (NRC) and average transmission loss (ATL). It seemed that the idea of using multiple nanomaterials simultaneously is to be an effective way. Besides, the SEM images of nine samples proved that the smaller cell size of the foam were achieved using the higher concentration of nanoparticles. These findings are in accordance with the acoustic results, as the sample with larger cell size and more open cells (C3) showed higher NRC and the sample with larger cell size and closed cells (B2) showed higher ATL values. To complete the study, some blank samples with zero level or only one type of the nanomaterial were also investigated. Interestingly, the obtained results indicated that the formula should contain more than one type of nanoparticle to achieve a better acoustic performance. Comparing the result obtained in this study for EPDM foam with the same EVA foam in our previous work, it can be seen that EPDM showed an increase of 15.56% in NRC and a slight decrease of 2.5% in ATL. This behavior could be due to the difference in their morphology, in which the EPDM has probably more open cells and thinner cell walls.
Tannaz Shahsavari-Badvestani; Reza Jahanmardi; Mohammad Iman Tayouri; Mansour Fathi
Abstract
In the present study, the thermal oxidation behaviour of high-density polyethylene (HDPE) containing each of two types of oxidized polyethylene (OPE), one prepared using 500 ppm of iron (III) stearate as pro-oxidant and the other without the pro-oxidant, was investigated. Fourier-transform infrared spectroscopy ...
Read More
In the present study, the thermal oxidation behaviour of high-density polyethylene (HDPE) containing each of two types of oxidized polyethylene (OPE), one prepared using 500 ppm of iron (III) stearate as pro-oxidant and the other without the pro-oxidant, was investigated. Fourier-transform infrared spectroscopy (FTIR) showed that the carbonyl index of the HDPE increased from 1.03 to 6.37 upon the addition of 5.0 wt.% of OPE containing the pro-oxidant after 100 h of thermo-oxidative aging at 90°C. Moreover, it was observed that the rate of changes in retained tensile strength and retained elongation-at-break of the HDPE during the thermal oxidation increased in the presence of 5.0 wt.% of each type of OPE, especially, the one containing iron (III) stearate, which was consistent with the obtained data from gel content measurements. Lastly, the evolution in crystallinity of the film samples was monitored by density measurements as well as differential scanning calorimetry (DSC). It was revealed that the crystallinity of the tested films during thermo-oxidative degradation grows faster in the presence of OPE. Overall, the findings indicated that the utilization of OPE containing trace amounts of iron (III) stearate can accelerate the thermal oxidation of HDPE films and facilitate entering the final biodegradation stage, while resolving the need to use high concentrations of harmful heavy metal salts.
Polyolefin degradation
Nikoo Karami; Reza Jahanmardi
Abstract
The present work is aimed to find a new and efficient type of antioxidants for polypropylene. Hence, effects of 3,3-bis(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-2-benzofuran-1-one, generally known as thymolphthalein, on thermo-oxidative stability of polypropylene in solid and melt states were evaluated ...
Read More
The present work is aimed to find a new and efficient type of antioxidants for polypropylene. Hence, effects of 3,3-bis(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-2-benzofuran-1-one, generally known as thymolphthalein, on thermo-oxidative stability of polypropylene in solid and melt states were evaluated and compared with those of SONGNOX 1010, an efficient commercially used antioxidant for the polymer. Oven ageing experiments followed by Fourier transform infrared (FTIR) spectroscopy showed that thymolphthalein increased thermo-oxidative stability of the polymer outstandingly in the solid state and its stabilization efficiency was comparable to that of SONGNOX 1010. In addition, measurements of oxidative induction time (OIT) and oxidation onset temperature (OOT) revealed that thymolphthalein improved thermo-oxidative stability of the polymer in the melt state significantly. It was also observed that thymolphthalein did not interfere with the stabilization action of SONGNOX 1010 in the polymer neither in melt nor in solid state. On the basis of the obtained results, a probable mechanism for the stabilization action of thymolphthalein in the polymer is proposed.