Structure and property relationship
Igor Chmutin; Ludmila Novokshonova; Petr Brevnov; Guzel Yukhayeva; Natalia Ryvkina
Abstract
There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. ...
Read More
There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler concentration, temperature, deformation and frequency of electric field. These relationships are compared with those for composites based on other carbon fillers including both nanoscale (carbon nanotubes, carbon black) and micron-sized (graphite, schungite) fillers. More specific electrical properties of investigated materials such as lower percolation threshold and higher dielectric permittivity compared to those for composites based on other carbon fillers are attributed to the plate-like shape of graphite nanoplates. These materials are distinguished also by their high electrical stability against temperature and deformation. Therefore, it makes graphite nanoplates the most preferable conductive filler for some practical applications. Some possible application areas for UHMWPE/graphite nanoplates nanocomposites will be also discussed.
Structure and property relationship
Alireza Nikfarjam; Roham Rafiee; Mostafa Taheri
Abstract
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the ...
Read More
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinforced polymers either theoretically or experimentally. The results reported in literature are reviewed and evaluated based on employed and/or developed methods by focusing on the electrical conductivity, permittivity and permeability properties. Available analytical and numerical simulations for predicting electrical properties of CNT-based composites are also reviewed. Besides, equivalent circuit modeling of nanocomposites containing CNTs is presented. The influence of effective parameters on overall electrical and electromagnetic characteristics of CNT-reinforced polymers is discussed based on published data. Therefore, highlighting the recent trends and challenges engaged in new investigations, those aspects which are required to be more deeply explored are introduced.