Document Type : Review
Authors
1 Department of MEMS&NEMS, Faculty of New Sciences and Technologies, University of Tehran, P.O.BOX:14395-1561, Tehran, Iran
2 Composites Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439955941 Iran
Abstract
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinforced polymers either theoretically or experimentally. The results reported in literature are reviewed and evaluated based on employed and/or developed methods by focusing on the electrical conductivity, permittivity and permeability properties. Available analytical and numerical simulations for predicting electrical properties of CNT-based composites are also reviewed. Besides, equivalent circuit modeling of nanocomposites containing CNTs is presented. The influence of effective parameters on overall electrical and electromagnetic characteristics of CNT-reinforced polymers is discussed based on published data. Therefore, highlighting the recent trends and challenges engaged in new investigations, those aspects which are required to be more deeply explored are introduced.
Keywords
Main Subjects
- Iijima S (1991)Helical microtubules of graphitic carbon. Nature 354: 56-58
- Qing YC, Zhou WC, Luo F, Zhu DM (2010)Electromagnetic and absorbing properties of multi-walled carbon nanotubes/epoxy-silicone coatings. J Inorg Mater 15: 181-185
- Zhao Y, Yuan L, Duan Y (2010) Study on the electrical behavior of MWCNTs in GF/epoxy composites J Nanosci Nanotechnol 10: 5333-5334
- Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. J Mater Design 88: 269-277
- Marconnet AM, Yamamoto N (2011) Nanocomposites with high packing density. J ACS Nano 5: 4818-4825
- Saini P (2013) Electrical properties and electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. In: Thermoset nanocomposites. Ed.: Mittal V, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 211-237
- Chin W, Lu CL, Hsu WK (2011) A radio frequen-cy induced intra-band transition in carbon nanotubes. Carbon 49: 2648-2652
- Liu Z, Bai G, Huang Y, MaY, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45: 821-827
- Sainia P, Choudhary V, Singhc BP, Mathurc RB, Dhawana SK (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range. Synth Met 161: 1522-1526
- Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol 64: 2309-2316
- Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44: 5893-5899
- Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos SciTechnol 66: 1285-1288
- Kim KH, Jo WH, A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47: 1126-1134
- Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152: 349-352
- Jun SC, Choi JH (2007) Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology 18: 255701
- Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z (2012) Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 69: 295-300
- Qiao Y, Li CMS, Bao J, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170: 79-84
- Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met159: 260-266
- Sawatsuk T, Chindaduang A, kung C, Pratontep S, Tumcharern G (2009) Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes: Performance improvement and their mechanisms. Diam Relat Mater 18: 524-527
- Zhao X, Park JY, Huang S, Liu J, McEuen PL (2005) Band Structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95: 146805
- Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319, 460-464
- Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39: 279-285
- Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund P (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6: 1141-1145
- Park JG, Louis J, Cheng Q, Bao J, Smithyman J, Liang R, Wang B, Zhang C, Brooks J, Kramer L, Fanchasis P, and Dorough D (2009) Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnol 20: 415702-415708
- Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15: 1415
- Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113: 919-926
- Saini P (2015) Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects, in fundamentals of conjugated polymer blends, copolymers and composites: Synthesis, properties and applications, John Wiley & Sons, Inc., Hoboken, NJ, USA
- Saini P, Arora M (2012) Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: New polymers for special applications, Ed. De Souza Gomes A, InTech, Croatia, 71-112
- Zhao T, Hou C, Zhang H, Zhu R, She S, Wang J, Li T, Liu Z, Wei B (2014) Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci Rep 4: 5619
- Li H, Lu W, Li J, Bai X, Gu C (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95: 86601
- Yan Q, Wu J, Zhou G, Duan W, Gu B (2005) Ab initio study of transport properties of multiwalled carbon nanotubes. Phys Rev B 72; 155425
- Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90: 5308-5317
- McEuen PL, Fuhrer MS, Park HK (2002) Single-walled carbon nanotube electronics. IEEE, doi:1536-125X/02
- Logakis E, Pissis P, Pospiech D, Korwitz A, KrauseB, Reuter U, Potschke P (2010) Low electrical percolation threshold in poly(ethylene terephthalate)/multi-walled carbon nanotube nanocomposites. Eur Polym J 46: 928-936
- Dosoudil R, Ušák E, Olah V (2010) Automated measurement of complex permeability and permittivity at high frequencies. J Electer Eng 61: 111-114
- Verma P, Saini P, Malik RS, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 89: 308-317
- Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116: 13403-13412
- Ku H (2003)Curing vinyl ester particle-reinforced composites using microwaves. J Compos Mater, doi: 10.1177/0021998303036266
- Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9: 814-818
- Liu YJ, Chen XL (2003) Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 35: 69-81
- Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans, doi:10.1109/TNANO.2003.808503
- Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans, doi:10.1109/TNANO.2002.806823
- Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Devic L, doi:10.1109/LED.2006.873765
- Naeemi A, Meindl JD (2007) Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE T Electron Dev, doi:10.1109/TED.2006.887210
- Nieuwoudt, A, Massoud Y (2006) Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE T Electron Dev, doi:10.1109/TED.2006.882035
- Massoud Y, Nieuwoudt A (2006) Accurate resistance modeling for carbon nanotube bundles in VLSI interconnect. IEEE Conf Nanotech-nology, doi:10.1109/NANO.2006.247631
- Pu SN, Yin WY, Mao JF, Liu QH (2009) Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle Interconnects. IEEE T Electron Dev 56: 560-568
- de Pablo PJ, Graugnard E, Walsh B, Andres RP, Datta S, Reifenberger R (1999) A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes. Appl Phys Lett 74: 323-325
- Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79: 1172-1174
- Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. Interconnect Technol Conf, doi:10.1109/IITC.2006.1648696
- Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275: 1922-1925
- Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE T Electron Dev 55: 2574-2582
- Hosseini A, Shabro V (2010) Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron Eng 87: 1955-1962
- Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50: 689-698
- Rafiee R, Sabour MH, Nikfarjam A, Taheri M (2014) The influence of CNT contents on the electrical and electromagnetic properties of CNT/vinylester, J Electron Mater 43: 3477-3485
- Li C, Thostenson ET, Chou TW (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68: 1445-1452
- Yi YB Berhan L (2004) Statistical geometry of random fibrous networks, revisited: Waviness, dimensionality, and percolation. J Appl Phys 96: 1318-1327
- Mendes MJ, Schmidt HK, Pasquali M (2008) Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis. J Phys Chem B 112: 7467-7477
- Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393: 49-52
- Prabhakar RB (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7: 1-29
- Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79: 1172-1174
- Solymar L, Walsh D (2004) Electrical properties of materials. Oxford University Press
- Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly (methyl methacrylate) and multiwalled carbon nanotube nanocomposites. Appl Phys Lett 88: 143114
- Wu TM, Lin SH (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by In situ chemical oxidative polymerization. J Polym Sci Pol Phys 44: 1413-1418
- Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43: 23-30
- Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A 41: 1345-1367
- Kuilla, T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35: 1350-1375
- Lewandowska M, Krawczynıska AT, Kulczyk M, Kurzydłowski KJ (2009) Structure and properties of nano-sized Eurofer 97 steel obtained by hydrostatic extrusion. J Nucl Mater 386-8: 499-502
- Mamunya Y, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M (2008) Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos Sci Technol 68: 1981-1988
- Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176: 175-182
- Yan KY, Xue QZ, Zheng QB, Hao LZ (2007) The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 18: 255705
- Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimentinal sticks system. Phys Rev Lett 52: 1465-1468
- Lagarkov AN, Sarychev AK (1996) Electromagnetic properties of composites containing elongated conducting inclusions. Phys Rev B 53: 6318-6336
- Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53: 6209-6214
- Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O (2001)Transport properties of PMMA-carbon nanotubes composites. Synth Met 121: 1215-1216
- Stephan C, Nguyen TP, Lahr B, Blau W, Lefrant S, Chauvet O (2002) Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites. J Mater Res 17: 396-400
- Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci Pol Phys 41: 3333-3338
- Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ, Lyu SC, Lee CJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Application to electromagnetic interference shielding. Curr Appl Phys 4: 577-580
- Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84: 589-591
- Chauvet O, Benoit JM, Corraze B (2004) Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42: 949-952
- Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 37: 9048-9055
- Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 44: 5023-5030
- Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83: 2928-2930
- Pötschke P, Abdel-Goad M, AligI, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45: 8863-8870
- Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos Interf 10: 389-404
- Potschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42: 965-969
- Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43: 3247-3255
- Kim BK, Lee J, Yu I (2003) Electrical properties of single-wall carbon nanotube and epoxy composites. J Appl Phys 94: 6724-6728
- Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378-1385
- Barrau, S, Demont P, Maraval C, Bernes A, Lacabanne C (2005) Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites. Macromol Rapid Commun 26: 390-394
- Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, SchulteK (2006)Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47: 2036-2045
- Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44: 3022-3029
- Wu J, Kong L (2004) High microwave permittivity of multiwalled carbon nanotube composites. Appl Phys Lett 84: 4956-4958
- Huang Y, Li N, Ma Y, Du F, Li F, He X, Lin X, Gao H, Chen Y (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45: 1614-1621
- Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67: 922-928
- Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89: 133102
- Liu L, Matitsine S, Gan YB, Chen LF, Kong LB, Rozanov KN (2007) Frequency dependence of effective permittivity of carbon nanotube composites. J Appl Phys 101: 94106
- Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17: 3207-3215
- Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC (2002) Carbon nanotube-polyaniline hybrid materials. Eur Polym J 38: 2497-2501
- Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl Phys Lett 85: 1796-1798
- Sharma BK, Khare N, Sharma R, Dhawan SK, Vankar VD, Gupta HC (2009) Dielectric behavior of polyaniline-CNTs composite in microwave region. Compos Sci Technol 69: 1932-1935
- Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: A high-resolution printable conductor. Appl Phys Lett 82: 1290-1292
- Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille JY, Forro L (2005) Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties. J Polym Sci Part Pol Phys 43: 1186-1197
- Kymakis E, Amaratunga G (2006) Electrical properties of single-wall carbon nanotube-polymer composite films. J Appl Phys 99: 084302-7
- Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RH (2005) Deformation-morphology correlations in electrically conductive carbon Nanotube-thermoplastic polyurethane nanoco-mposites. Polymer 46: 4405-4420
- Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Compos A 37: 1252-1259
- Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70: 633-637
- Grossiord N, Loos J, Laake LV, Maugey M, Zakri C, Koning CE, Hart AJ (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18: 3226-3234
- Poa CH, Silva SRP, Watts PCP, Hsu WK, Kroto HW, Walton DRM (2002) Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix. Appl Phys Lett 80: 3189-3191
- Li HC, Lu SY, Syue SH, Hsu WK, Chang SC (2008) Conductivity enhancement of carbon nanotube composites by electrolyte addition. Appl Phys Lett 93: 033104
- Yoshino K, Kajii H, Araki H, Sonoda T, Take H, Lee S (1999) Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites. Full Sci Technol 7: 695-711
- Saeed K, Park SY (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104: 1957-1963
- Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly(ε-caprolactone). Macromolecules 40: 1538-1545
- Mierczynska A, Mayne-L’Hermite M, Boiteux G (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105: 158-168
- Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Europ Polym J 43: 949-958
- Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 47: 2112-2142
- Mclachlan DS, Chiteme C, Park C, Wish KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Pol Phys 43: 3273-3287
- Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Huntzler S, Roth S, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92: 4024-4030
- Barrau S, Demont P, Peigney A, Laurent C, Lacabanne, C (2003) DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 36: 5187-5194
- Wu TM, Chang HL, Lin YW (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69: 639-644
- Li J, Liu J, Gao C, Zhang J, Sun H (2009) Influence of MWCNTs doping on the structure and properties of PEDOT:PSS films. Int J Photoenergy, doi:10.1155/2009/650509
- Hermant MC, van der Schoot P, Klumperman B, Koning CE (2010) Probing the cooperative nature of the conductive components in polystyrene/ poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) single-walled carbon nanotube composites. ACS Nano 4: 2242-2248
- Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Compos A-Appl S 37: 1252-1259
- Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: A review. Compos Sci Technol 61: 1899-1912
- Wang Q, Dai J, Li W, Wei Z, Jiang J (2008)The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68: 1644-1648
- Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A 49: 26-34
- Zhi Hua P, Jing Cui P, Yan Feng P, Jie Yang W (2008) Complex conductivity and permittivity of single wall carbon nanotubes/polymer composite at microwave frequencies: A theoretical estimation. Chinese Sci Bull 53: 3497-3504
- Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 36: 5187-5194
- Slepyan GY, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Electromagnetic properties of composite materials containing carbon nanotubes. URSI International Symposium on Electromagnetic Theory, doi:10.1109/URSI-EMTS.2010.5637292
- Kozlowski G, Kleismit R, Boeckl J, Campbell A, Munbodh K, Hopkins S, Koziol K, Peterson T (2009) Electromagnetic characterization of carbon nanotube films by a two-point evanescent microwave method. Physica E 41: 1539-1544
- Brown WF (1956) Dielectrics, Springer, Berlin, Heidelberg
- Mangalaraj D, Radhakrishnan M, Bala-subramanian C (1982) Dielectric and AC conduction properties of ion plated aluminum nitride thin films. J Phys D Appl Phys, doi:10.1088/0022-3727/15/3/012
- Challa RK, Kajfez D, Demir V, Gladden JR, Elsherbeni A (2008) Characterization of multiwalled carbon nanotube (MWCNT) composites in a waveguide of square cross section. IEEE. Microwave wireless comp lett 18: 161-163
- Watts PCP, Ponnampalam DR, Hsu WK, Barnes A, Chambers B (2003) The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band. Chem Phys Lett 378: 609-614
- Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319: 460-464
- Celzard A, McRae E, Deleuze C (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53: 6209-6214
- Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43: 3331-3336
- Liu L, Kong LB, Yin WY, Chen Y, Matitsine S (2010) Microwave dielectric properties of carbon nanotube composites. Carbon Nanotubes, doi: 10.5772/39420
- Tianjiao B, Yan Z, Xiaofeng S, Yuexin D (2011) A study of the electromagnetic properties of cobalt-multiwalled carbon nanotubes (Co-MWCNTs) composites. Mater Sci Eng B 176: 906-912
- Shen X, Gong RZ, Nie Y, Nie JH (2005) Preparation and electromagnetic performance of coating of multiwall carbon nanotubes with iron nanogranule. J Magn Mater 288: 397-402
- Hou C, Li T, Zhao T, Zhang W, Cheng Y (2012) Electromagnetic wave absorbing properties of carbon nanotubes doped rare metal/pure carbon nanotubes double-layer polymer composites. Mater Design 33: 413-418
- Kim JB, Byun JH (2010) Influence of the CNT length on complex permittivity of composite laminates and on radar absorber design in X-band. Nanotechnology, doi: 10.1109/NANO.2010.5697804
- Imai M, Akiyama K, Tanaka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Compos Sci Techno l70: 1564-1570
- Zhao DL, Li X, Shen ZM (2008) Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Compos Sci Technol 68: 2902-2908
- Han M, Deng L (2011) High frequency properties of carbon nanotubes and their electromagnetic wave absorption properties. In: Carbon nanotubes applications on electron devices, In Tech.