Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites

Document Type: Review


1 Department of MEMS&NEMS, Faculty of New Sciences and Technologies, University of Tehran, P.O.BOX:14395-1561, Tehran, Iran

2 Composites Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439955941 Iran


Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinforced polymers either theoretically or experimentally. The results reported in literature are reviewed and evaluated based on employed and/or developed methods by focusing on the electrical conductivity, permittivity and permeability properties. Available analytical and numerical simulations for predicting electrical properties of CNT-based composites are also reviewed. Besides, equivalent circuit modeling of nanocomposites containing CNTs is presented. The influence of effective parameters on overall electrical and electromagnetic characteristics of CNT-reinforced polymers is discussed based on published data. Therefore, highlighting the recent trends and challenges engaged in new investigations, those aspects which are required to be more deeply explored are introduced.


Main Subjects

  1. Iijima S (1991)Helical microtubules of graphitic carbon. Nature 354: 56-58
  2. Qing YC, Zhou WC, Luo F, Zhu DM (2010)Electromagnetic and absorbing properties of multi-walled carbon nanotubes/epoxy-silicone coatings. J Inorg Mater 15: 181-185
  3. Zhao Y, Yuan L, Duan Y (2010) Study on the electrical behavior of MWCNTs in GF/epoxy composites J Nanosci Nanotechnol 10: 5333-5334
  4. Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. J Mater Design 88: 269-277
  5. Marconnet AM,  Yamamoto N (2011) Nanocomposites with high packing density. J ACS Nano 5: 4818-4825
  6. Saini P (2013) Electrical properties and electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. In: Thermoset nanocomposites. Ed.: Mittal V, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 211-237
  7. Chin W, Lu CL, Hsu WK (2011) A radio frequen-cy induced intra-band transition in carbon nanotubes. Carbon 49: 2648-2652
  8. Liu Z, Bai G, Huang Y, MaY, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45: 821-827
  9. Sainia P, Choudhary V, Singhc BP, Mathurc RB, Dhawana SK (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range. Synth Met 161: 1522-1526
  10. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004)    Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol 64: 2309-2316
  11. Sandler JKW, Kirk  JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44: 5893-5899
  12. Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos SciTechnol 66: 1285-1288
  13. Kim KH, Jo WH, A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47: 1126-1134
  14. Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152: 349-352
  15. Jun SC, Choi JH (2007) Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology 18: 255701
  16. Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z (2012) Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim  Acta 69: 295-300
  17. Qiao Y, Li CMS, Bao J, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170: 79-84
  18. Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met159: 260-266
  19. Sawatsuk T, Chindaduang A, kung C, Pratontep S, Tumcharern G (2009) Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes: Performance improvement and their mechanisms. Diam Relat Mater 18: 524-527
  20. Zhao X, Park JY, Huang S, Liu J, McEuen PL (2005) Band Structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95: 146805
  21. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319, 460-464
  22. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39: 279-285
  23. Li N, Huang Y, Du F,  He X, Lin X, Gao H, Ma Y, Li F,  Chen Y, Eklund P (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6: 1141-1145
  24. Park JG, Louis J, Cheng Q, Bao J, Smithyman J, Liang R, Wang B, Zhang C, Brooks J, Kramer L, Fanchasis P, and Dorough D (2009) Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnol 20: 415702-415708
  25. Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites.  J Nanopart Res 15: 1415
  26. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113: 919-926
  27. Saini P (2015) Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects, in fundamentals of conjugated polymer blends, copolymers and composites: Synthesis, properties and applications, John Wiley & Sons, Inc., Hoboken, NJ, USA
  28. Saini P, Arora M (2012) Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: New polymers for special applications, Ed. De Souza Gomes A, InTech, Croatia, 71-112
  29. Zhao T, Hou C, Zhang H, Zhu R, She S, Wang J, Li T, Liu Z, Wei B (2014)  Electromagnetic wave absorbing properties of amorphous carbon nanotubes.  Sci Rep 4: 5619
  30. Li H, Lu W, Li J, Bai X, Gu C (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95: 86601
  31. Yan Q, Wu J, Zhou G, Duan W, Gu B (2005) Ab initio study of transport properties of multiwalled carbon nanotubes. Phys Rev B 72; 155425
  32. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90: 5308-5317
  33. McEuen PL, Fuhrer MS, Park HK (2002) Single-walled carbon nanotube electronics. IEEE, doi:1536-125X/02
  34. Logakis E, Pissis P, Pospiech D, Korwitz A, KrauseB, Reuter U, Potschke P (2010) Low electrical percolation threshold in poly(ethylene terephthalate)/multi-walled carbon nanotube nanocomposites.  Eur Polym J 46: 928-936
  35. Dosoudil R,  Ušák E, Olah V (2010) Automated measurement of complex permeability and permittivity at high frequencies. J Electer Eng 61: 111-114
  36. Verma P, Saini P, Malik RS, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 89: 308-317
  37. Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116: 13403-13412
  38. Ku H (2003)Curing vinyl ester particle-reinforced composites using microwaves. J Compos Mater, doi: 10.1177/0021998303036266
  39. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9: 814-818
  40. Liu YJ, Chen XL (2003) Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 35: 69-81
  41. Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans, doi:10.1109/TNANO.2003.808503
  42. Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans, doi:10.1109/TNANO.2002.806823
  43. Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Devic L, doi:10.1109/LED.2006.873765
  44. Naeemi A, Meindl JD (2007) Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE T Electron Dev, doi:10.1109/TED.2006.887210
  45. Nieuwoudt, A, Massoud Y (2006) Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE T Electron Dev, doi:10.1109/TED.2006.882035
  46. Massoud Y, Nieuwoudt A (2006) Accurate resistance modeling for carbon nanotube bundles in VLSI  interconnect. IEEE Conf Nanotech-nology, doi:10.1109/NANO.2006.247631
  47. Pu SN, Yin WY, Mao JF, Liu QH (2009) Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle Interconnects. IEEE T Electron Dev 56: 560-568
  48. de Pablo PJ, Graugnard E, Walsh B, Andres RP, Datta S, Reifenberger R (1999) A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes. Appl Phys Lett 74: 323-325
  49. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79: 1172-1174
  50. Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. Interconnect Technol Conf, doi:10.1109/IITC.2006.1648696
  51. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275: 1922-1925
  52. Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE T Electron Dev 55: 2574-2582
  53. Hosseini A, Shabro V (2010) Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron Eng 87: 1955-1962
  54. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50: 689-698
  55. Rafiee R, Sabour MH, Nikfarjam A, Taheri M (2014) The influence of CNT contents on the electrical and electromagnetic properties of CNT/vinylester, J Electron Mater 43: 3477-3485
  56. Li C, Thostenson ET, Chou TW (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68: 1445-1452
  57. Yi YB Berhan L (2004) Statistical geometry of random fibrous networks, revisited: Waviness, dimensionality, and percolation. J Appl Phys 96: 1318-1327
  58. Mendes MJ, Schmidt HK, Pasquali M (2008) Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis. J Phys Chem B 112: 7467-7477
  59. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393: 49-52
  60. Prabhakar RB (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7: 1-29
  61. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79: 1172-1174
  62. Solymar L, Walsh D (2004) Electrical properties of materials. Oxford University Press
  63. Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly (methyl methacrylate) and multiwalled carbon nanotube nanocomposites. Appl Phys Lett 88: 143114
  64. Wu TM, Lin SH (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by In situ chemical oxidative polymerization. J Polym Sci Pol Phys 44: 1413-1418
  65. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43: 23-30
  66. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A 41: 1345-1367
  67. Kuilla, T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35: 1350-1375
  68. Lewandowska M, Krawczynıska AT, Kulczyk M, Kurzydłowski KJ (2009) Structure and properties of nano-sized Eurofer 97 steel obtained by hydrostatic extrusion. J Nucl Mater 386-8: 499-502
  69. Mamunya Y, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M (2008) Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos Sci Technol 68: 1981-1988
  70. Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176: 175-182
  71. Yan KY, Xue QZ, Zheng QB, Hao LZ (2007) The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 18: 255705
  72. Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimentinal sticks system. Phys Rev Lett 52: 1465-1468
  73. Lagarkov AN, Sarychev AK (1996) Electromagnetic properties of composites containing elongated conducting inclusions. Phys Rev B 53: 6318-6336
  74. Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53: 6209-6214
  75. Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O (2001)Transport properties of PMMA-carbon nanotubes composites. Synth Met 121: 1215-1216
  76. Stephan C, Nguyen TP, Lahr B, Blau W, Lefrant S, Chauvet O (2002) Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites. J Mater Res 17: 396-400
  77. Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci Pol Phys 41: 3333-3338
  78. Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ, Lyu SC, Lee CJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Application to electromagnetic interference shielding. Curr Appl Phys 4: 577-580
  79. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84: 589-591
  80. Chauvet O, Benoit JM, Corraze B (2004) Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42: 949-952
  81. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 37: 9048-9055
  82. Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 44: 5023-5030
  83. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83: 2928-2930
  84. Pötschke P, Abdel-Goad M, AligI, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45: 8863-8870
  85. Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotube composites.  Compos Interf 10: 389-404
  86. Potschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42: 965-969
  87. Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43: 3247-3255
  88. Kim BK, Lee J, Yu I (2003) Electrical properties of single-wall carbon nanotube and epoxy composites.  J Appl Phys 94: 6724-6728
  89. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378-1385
  90. Barrau, S, Demont P, Maraval C, Bernes A, Lacabanne C (2005) Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites. Macromol Rapid Commun 26: 390-394
  91. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, SchulteK (2006)Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47: 2036-2045
  92. Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44: 3022-3029
  93. Wu J, Kong L (2004) High microwave permittivity of multiwalled carbon nanotube composites. Appl Phys Lett 84: 4956-4958
  94. Huang Y, Li N, Ma Y, Du F, Li F, He X, Lin X, Gao H, Chen Y (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45: 1614-1621
  95. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67: 922-928
  96. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89: 133102
  97. Liu L, Matitsine S, Gan YB, Chen LF, Kong LB, Rozanov KN (2007) Frequency dependence of effective permittivity of carbon nanotube composites. J Appl Phys 101: 94106
  98. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17: 3207-3215
  99. Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC (2002) Carbon nanotube-polyaniline hybrid materials. Eur Polym J 38: 2497-2501
  100. Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl Phys Lett 85: 1796-1798
  101. Sharma BK, Khare N, Sharma R, Dhawan SK, Vankar VD, Gupta HC (2009) Dielectric behavior of polyaniline-CNTs composite in microwave region. Compos Sci Technol 69: 1932-1935
  102.                    Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: A high-resolution printable conductor.  Appl Phys Lett 82: 1290-1292
  103. Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille JY, Forro L (2005) Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties. J Polym Sci Part Pol Phys 43: 1186-1197
  104. Kymakis E, Amaratunga G (2006) Electrical properties of single-wall carbon nanotube-polymer composite films. J Appl Phys 99: 084302-7
  105. Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RH (2005) Deformation-morphology correlations in electrically conductive carbon Nanotube-thermoplastic polyurethane nanoco-mposites. Polymer 46: 4405-4420
  106. Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Compos A 37: 1252-1259
  107. Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70: 633-637
  108. Grossiord N, Loos J, Laake LV, Maugey M, Zakri C, Koning CE, Hart AJ (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18: 3226-3234
  109. Poa CH, Silva SRP, Watts PCP, Hsu WK, Kroto HW, Walton DRM (2002) Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix.  Appl Phys Lett 80: 3189-3191
  110. Li HC, Lu SY, Syue SH, Hsu WK, Chang SC (2008) Conductivity enhancement of carbon nanotube composites by electrolyte addition. Appl Phys Lett 93: 033104
  111. Yoshino K, Kajii H, Araki H, Sonoda T, Take H, Lee S (1999) Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites. Full Sci Technol 7: 695-711
  112. Saeed K, Park SY (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104: 1957-1963
  113. Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly(ε-caprolactone). Macromolecules 40: 1538-1545
  114. Mierczynska A, Mayne-L’Hermite M, Boiteux G (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method.  J Appl Polym Sci 105: 158-168
  115. Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Europ Polym J 43: 949-958
  116. Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 47: 2112-2142
  117. Mclachlan DS, Chiteme C, Park C, Wish KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Pol Phys 43: 3273-3287
  118. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Huntzler S, Roth S, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92: 4024-4030
  119. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne, C (2003) DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 36: 5187-5194
  120. Wu TM, Chang HL, Lin YW (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69: 639-644
  121. Li J, Liu J, Gao C, Zhang J, Sun H (2009) Influence of MWCNTs doping on the structure and properties of PEDOT:PSS films. Int J Photoenergy, doi:10.1155/2009/650509
  122. Hermant MC, van der Schoot P, Klumperman B, Koning CE (2010) Probing the cooperative nature of the conductive components in polystyrene/ poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) single-walled carbon nanotube composites. ACS Nano 4: 2242-2248
  123. Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Compos A-Appl S 37: 1252-1259
  124. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: A review. Compos Sci Technol 61: 1899-1912
  125. Wang Q, Dai J, Li W, Wei Z, Jiang J (2008)The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68: 1644-1648
  126. Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A 49: 26-34
  127. Zhi Hua P, Jing Cui P, Yan Feng P, Jie Yang W (2008) Complex conductivity and permittivity of single wall carbon nanotubes/polymer composite at microwave frequencies: A theoretical estimation. Chinese Sci Bull 53: 3497-3504
  128. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 36: 5187-5194
  129. Slepyan GY, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Electromagnetic properties of composite materials containing carbon nanotubes. URSI International Symposium on Electromagnetic Theory, doi:10.1109/URSI-EMTS.2010.5637292
  130. Kozlowski G, Kleismit R, Boeckl J, Campbell A, Munbodh K, Hopkins S, Koziol K, Peterson T (2009) Electromagnetic characterization of carbon nanotube films by a two-point evanescent microwave method. Physica E 41: 1539-1544
  131. Brown WF (1956)  Dielectrics, Springer, Berlin, Heidelberg
  132. Mangalaraj D, Radhakrishnan M, Bala-subramanian C (1982) Dielectric and AC conduction properties of ion plated aluminum nitride thin films. J Phys D Appl Phys, doi:10.1088/0022-3727/15/3/012
  133. Challa RK, Kajfez D, Demir V, Gladden JR, Elsherbeni A (2008) Characterization of multiwalled carbon nanotube (MWCNT) composites in a waveguide of square cross section. IEEE. Microwave wireless comp lett 18: 161-163
  134. Watts PCP, Ponnampalam DR, Hsu WK, Barnes A, Chambers B (2003) The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band. Chem Phys Lett 378: 609-614
  135. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319: 460-464
  136. Celzard A, McRae E, Deleuze C (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53: 6209-6214
  137. Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43: 3331-3336
  138. Liu L, Kong LB, Yin WY, Chen Y, Matitsine S (2010) Microwave dielectric properties of carbon nanotube composites. Carbon Nanotubes, doi: 10.5772/39420
  139. Tianjiao B, Yan Z, Xiaofeng S, Yuexin D (2011) A study of the electromagnetic properties of cobalt-multiwalled carbon nanotubes (Co-MWCNTs) composites. Mater Sci Eng B 176: 906-912
  140. Shen X, Gong RZ, Nie Y, Nie JH (2005) Preparation and electromagnetic performance of coating of multiwall carbon nanotubes with iron nanogranule. J Magn Mater 288: 397-402
  141. Hou C, Li T, Zhao T, Zhang W, Cheng Y (2012) Electromagnetic wave absorbing properties of carbon nanotubes doped rare metal/pure carbon nanotubes double-layer polymer composites. Mater Design 33: 413-418
  142. Kim JB, Byun JH (2010) Influence of the CNT length on complex permittivity of composite laminates and on radar absorber design in X-band. Nanotechnology, doi: 10.1109/NANO.2010.5697804
  143. Imai M, Akiyama K, Tanaka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Compos Sci Techno l70: 1564-1570
  144. Zhao DL, Li X, Shen ZM (2008) Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Compos Sci Technol 68: 2902-2908
  145. Han M, Deng L (2011) High frequency properties of carbon nanotubes and their electromagnetic wave absorption properties. In: Carbon nanotubes applications on electron devices, In Tech.