With the collaboration of Iran Polymer Society

Document Type : Original research

Authors

1 Faculty of Technology, Process Engineering Laboratory, University of Bordj Bou Arreridj, 34000 Algeria

2 Laboratory of Physico-Chemistry of High Polymers, Institute of Materials science and Techniques, Setif 1 University Ferhat Abbas, Setif, 19000 Algeria

3 Laboratory of Multiphase Polymeric Materials, Institute of Materials science and Techniques, Setif 1 University Ferhat Abbas, Setif 19000, Algeria

Abstract

This study demonstrates that quenching and annealing significantly influence the mechanical and thermophysical behavior of low density polyethylene (LDPE). Rapid quenching at temperature of –25 °C enhances ductility by increasing elongation at break, despite reducing thermophysical properties, likely due to microstructural refinement. In contrast, post-quenching annealing especially at 100 °C improves thermal conductivity and crystallinity but reduces ductility. The results underscore a tunable balance between thermal and mechanical performance, governed by the interplay of beta (β-) and alpha (α-) relaxation modes during heat treatment. Post-quenching annealing of low density polyethylene LDPE, particularly at 100 °C, significantly enhanced thermal conductivity, diffusivity, and crystallinity, albeit with a trade-off in ductility and increased brittleness. Quenching within the beta (β-) relaxation range promoted maximum ductility, while annealing in the alpha (α-) relaxation range improved thermophysical properties. These findings reveal that precise control of heat treatment conditions enables a tunable balance between mechanical flexibility and thermophysical performance in LDPE

Keywords

Main Subjects

  1. Al-Jumaili SK, Alkaron WA, Atshan MY (2023) Mechanical, thermal, and morphological properties of low-density polyethylene nanocomposites reinforced with montmorillonite: Fabrication and characterizations. Cogent Eng 10: 2204550 [CrossRef]
  2. Rouabah F, Fois M, Ibos L, Boudenne A, Picard C, Dadache D, Haddaoui N (2008) Mechanical and thermal properties of polycarbonate, part 1: Influence of free quenching. J Appl Polym Sci 109: 1505-1514 [CrossRef]
  3. Rouabah F, Dadache D, Haddaoui N (2012) Thermophysical and mechanical properties of polystyrene: Influence of free quenching. ISRN Polym Sci 2012: 1-8 [CrossRef]
  4. Barka B, Rouabah F, Zouaoui F, Fois M, Nouar Y, Bencid A (2022) Thermophysical behavior of polycarbonate: Effect of free quenching above and below the glass transition temperature. Adv Mater Res 1174: 123-136 [CrossRef]
  5. Dadache D, Rouabah F, Fois M, Guellal M (2018) Effects of free quenching on mechanical, thermomechanical and thermophysical properties of titanium dioxide-pigmented polystyrene. Russ J Appl Chem 91: 1974-1983 [CrossRef]
  6. Rouabah F, Dadache D, Fois M, Haddaoui N (2014) Effect of the quenching temperature on the mechanical and thermophysical properties of polycarbonate pigmented with titanium dioxide. J Polym Eng 34: 657-663 [CrossRef]
  7. Bencid A, Rouabah F, Fois M, Djidjelli H (2017) Effect of the free quenching on mechanical and thermomechanical properties of ABS. Russ J Appl Chem 90: 2009-2015 [CrossRef]
  8. Zhou H, Wilkes G (1997) Comparison of lamellar thickness and its distribution determined from d.s.c., SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology. Polymer 38: 5735-5747 [CrossRef]
  9. Alberola N, Cavaille JY, Perez J (1990) Mechanical spectrometry of alpha relaxations of high‐density polyethylene. J Polym Sci Pol Phys 28: 569-586 [CrossRef]
  10. Poh L, Wu Q, Chen Y, Narimissa E (2022) Characterization of industrial low-density polyethylene: a thermal, dynamic mechanical, and rheological investigation. Rheol Acta 61: 701-720 [CrossRef]
  11. Hoq T (2014), Effect of heat treatment on morphology and dielectric properties of polyethylene, Phd Thesis Stockholm, Sweden
  12. Leyva-Porras C, Balderrama-Aguilar A, Estrada-Ávila Y, Espelosín-Gómez I, Mendoza-Duarte M, Piñón-Balderrama C, Saavedra-Leos MZ, Estrada-Moreno I (2021) Injection molding of low-density polyethylene (LDPE) as a model polymer: Effect of molding parameters on the microstructure and crystallinity. Polymers 13: 3597 [CrossRef]
  13. Moyses SC, Zukermann-Schpector J (2004) Annealing in low density polyethylene at several temperatures. Polym J 36: 679-683 [CrossRef]
  14. Merabet S, Rouabah F, Fois M (2019) Heat treatment of isotactic polypropylene: the effect of free quenching from the melt state. Int J Polym Anal Charact 24: 313-325 [CrossRef]
  15. Merabet S, (2019), Amélioration des performances du polypropylène isotactique : rôle de la trempe libre, PhD Thesis. Ferhat Abbas Setif University 1, Algeria
  16. Latreche L, Rouabah F, Haddaoui N (2019) Influence of free quenching on mechanical physical and thermal properties of high density polyethylene. Chem Process Eng Res 59, 1–7 [CrossRef]
  17. Tuominen M, Ek M, Saloranta P, Toivakka M, Kuusipalo J (2013) The effect of flame treatment on surface properties and heat sealability of low‐density polyethylene coating. Packag Technol Sci 26: 201-214 [CrossRef]
  18. Ahmed T, Mamat O (2011) The development and characterization of HDPE-silica sand nanoparticles composites. In: Proceedings of the IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, pp.: 6–11
  19. Alapati S, Meledath JT, Karmarkar A (2014) Effect of morphology on electrical treeing in low density polyethylene nanocomposites. IET Sci Meas Technol 8: 60-68 [CrossRef]
  20. 22007-2 (2008) Plastics – Determination of thermal conductivity and thermal diffusivity – Part 2: transient plane heat source (hot disc) method, 1st ed.; ISO: Geneva, Switzerland
  21. Loos J, Tian M, Rastogi S, Lemstra PJ (2000) An investigation on chain mobility in solid state polymer systems. J Mater Sci 35: 5147-5156 [CrossRef]
  22. Meinel G, Peterlin A (1967) Changes in noncrystalline regions of polyethylene during annealing. J Polym Sci B Polym Lett 5: 613-618 [CrossRef]