With the collaboration of Iran Polymer Society

Document Type : Original research

Authors

1 Instituto Tecnológico de Cd. Madero, Departamento de Ingeniería Química, Av. Primero de Mayo S/N, Col. Los Mangos, 89440, Cd. Madero, Tamaulipas, México

2 Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna 140, C.P. 25100, Saltillo, Coah, México

3 Centro de Investigación en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes Saavedra 120, C.P 31136, Chihuahua, Chih, México

Abstract

In this research we provide a practical guide to achieve the successful extrusion of LDPE tapes commercially used in mesh fences, with controlled dimensions, good mechanical properties and weather resistance. Here we share: 1) The die design dimensions and its specialized slotted manufacture to get the veins of tape, 2) Processing temperatures profile, 3) Cooling method, 4) Hot stretch ratio (HSR), and 5) The effect of colorant and ultraviolet rays’ protector, due to the outdoor use of polymer privacy tape. The formulated tape (0.8 wt. % UV protector and 5 wt. % colorant) showed the best performance under accelerated aging and reached good mechanical properties up to a time of 2000 hours compared to its initial values. The dye and the UV additive improved the mechanical properties. All these, led to obtain a LDPE tape to fulfill the expectative and characteristic of a commercial tape used for mesh fences.

Graphical Abstract

Design, development and tested extrusion system for privacy LDPE tapes used in mesh fences

Keywords

Main Subjects

  1. Pham NTH (2021) Characterization of low-density polyethylene and LDPE-based/ethylene-vinyl acetate with medium content of vinyl acetate. Polymers 13: 2352 [CrossRef]
  2. Samler LF (1946) Polyethylene Tape Extrusion, US Patent 2,499,421
  3. Hyvärinen M, Jabeen R, Kärki T (2020) The Modelling of Extrusion Processes for Polymers—A Review. Polymers 12: 1306 [CrossRef]
  4. Mitroshin VN, Mitroshin YV (2016) Optimal control of cable insulation cooling at extrusion line. 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM): 1-4 [CrossRef]
  5. Rodriguez‐Gonzalez FJ, Virgilio N, Ramsay BA, Favis BD (2003) Influence of melt drawing on the morphology of one‐ and two‐step processed LDPE/thermoplastic starch blends. Adv Polym Technol 22: 297-305 [CrossRef]
  6. Luo C (2020) Modeling the temperature profile of an extrudate in material extrusion additive manufacturing. Mater Let 270: 127742 [Crossref]
  7. Christiano, JP (2012).Examination of the performance of a high speed single screw extruder for several different extrusion applications. In: Proceedings of the Annual Technical Conference—ANTEC, Conference Proceedings, Orlando, FL, USA, 2
  8. Liu YM (2012) Plastic Parts Die Design Analysis. Appl Mech Mater 246-247: 956-995 [CrossRef]
  9. Huang Y, Gentle CR, Lacey M, Prentice P (2000) Analysis and improvement of die design for the processing of extruded plastic pipes. Mater Des 21: 465-475 [CrossRef]
  10. Liang JZ (2019) Melt strength and drawability of HDPE, LDPE and HDPE/LDPE blends. Polym Test 73: 433-438 [CrossRef]
  11. Rodriguez-Gonzalez F, Ramsay BA, Favis BD (2004) Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr Polym 58: 139-147 [CrossRef]
  12. Wu Min, (1999) Effects of dispersion on rheological properties of filled polypropylene, Master Thesis, Polytechnique de Montreal, Canada
  13. Djellali S, Sadoun T, Haddaoui N, Bergeret A (2015). Viscosity and viscoelasticity measurements of low density polyethylene/poly(lactic acid) blends. Polym Bull 72: 1177-1195 [CrossRef]
  14. Christopher W. Macosko, (1994) Rheology principles, measurements and applications, Wiley-VCH, ISBN: 1-56081-579-5
  15. Tadmor Zehev and Gogos Costas G, (2006) Principles of polymer processing, Editorial Wiley, 2nd Edition.
  16. Greene J (2021) Rheology and plastic flow. In: Automotive plastics and composites, pp.: 57-69 [CrossRef]
  17. Nguyen BK, McNally GM, Clarke A (2014) Real time measurement and control of viscosity for extrusion processes using recycled materials. Polym Degrad Stabil 102: 212-221[CrossRef]
  18. Qiao RM, Zhao CP, Liu JL, Zhang ML, He WQ (2022) Synthesis of novel ultraviolet absorbers and preparation and field application of anti-ultraviolet aging PBAT/UVA films. Polymers 14: 1434 [CrossRef]
  19. Zapata P, Palza H, Díaz B, Armijo A, Sepúlveda F, Ortiz JA, Ramírez MP, Oyarzún C (2019) Effect of CaCO3 nanoparticles on the mechanical and photo-degradation properties of LDPE. Molecules 24: 126 [CrossRef]
  20. Kochetov R, Christen T, Gullo F (2017). FTIR analysis of LDPE and XLPE thin samples pressed between different protective anti-adhesive films. 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE) [CrossRef]
  21. Barni D, Raimondo L, Galli A, Caglio S, Mostoni S, D’Arienzo M, Martini M, Sassella A (2022). Separating pigments and fillers from the polymer matrix in acrylic colors subjected to natural aging. Eur Phys J Plus 137: 926 [CrossRef]
  22. Ovalı S, Sancak E (2020) Investigating the effect of the aging process on LDPE composites with UV protective additives. Journal of Thermoplastic Composite Materials 35: 1921-1939 [CrossRef]
  23. Ramirez E, Martinez JG, Sanches S, Balderas CL (1995) Prediction of useful life of greenhouse films with artificial ageing equipment. Plasticulture 105: 5-12
  24. Saron C, Felisberti MI (2006) Ação de colorantes na degradação e estabilização de polímeros. Química Nova 29: 124-128 [CrossRef]
  25. Murayama T, Abe E, Saito H (2021) Strengthening of mille-feuille structured high-density polyethylene by heat elongation. Polymer 236: 124343 [CrossRef]
  26. Mao Q, Su B, Ma R, Li Z (2022) Investigation of tensile creep behavior for high-density polyethylene (HDPE) via experiments and mathematical model. Materials 14: 6188 [CrossRef]