Optimization of parameters affecting separation of gas mixture of O2, N2, CO2 and CH4 by PMP membrane modified with TiO2, ZnO and Al2O3 nanoparticles

Document Type : Original research


1 Department of Chemical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Chemical Engineering, Department of Petroleum Engineering, Tarbiat Modares University, Tehran, Iran


The application of membranes in various industries is one of the most urgent needs to reduce energy consumption and environmental pollutants as well as low investment costs in the process of separation. In this investigation, the optimization of effective parameters for separation of gas mixture of CH4, CO2, O2 and N2 is studied by modified poly(4-methyl-1-pentane) (PMP) membrane including nanoparticles (TiO2, ZnO, Al2O3). Design expert software was used and prevailing data on membrane modeling were categorized according to the process variables such as permeability, selectivity, composition and percentage of nanoparticle, and gas pressure difference. In order to validate the model, the results predicted by the model were compared with the experimental data. Good agreement was observed between the predicted and experimental data, and it was found that nanoparticles have a considerable effect on the results. In the case of gas permeability, the best results were obtained for the nanoparticles of alumina (15 wt%) at the pressure of 3 bar. However, titanium dioxide nanoparticle (10 wt%) at the pressure of 9 bar showed the best results for gas selectivity. The optimum point for both permeability and selectivity was obtained for the membrane containing 10 wt% titanium dioxide at 5 bar.


Main Subjects

  1. Zeinali S, Aryaeinezhad M (2015) Precipitation in a micromixer from laboratory to industrial scale. Chem Eng Technol 38: 2079-2086
  2. Barquı´n AF, Coterillo CC, Palomino M, Valencia S, Irabien A (2015) Current status and future prospect of polymer-layered silicate mixed-matrix membranes for CO2/CH4 separation. Chem Eng Technol 38: 658-666
  3. Heydari S, Pirouzfar V (2016) The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes: Empirical modeling and process optimization using surface methodology. RSC Adv 6: 14149-14163
  4. Soleymanipour SF, Saeedi Dehaghani AH, Pirouzfar V, Alihossein A(2016) The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/ polysulfone-Kapton. J Appl Polym Sci 133: 4389-4397
  5. Nematollahi MH, Saeedi Dehaghani AH, Abeini R (2016) CO2/CH4 separation with( poly4- methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles. Korean J Chem Eng 33: 657-665
  6. Abedini R, Mousavi SM, Aminzadeh R (2012) Effect of nonchemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stabilty and pure water flux of asymmetric cellulose acetate nanocomposite membranes prepared via phase inversion method. Chem Ind Chem Eng Q 18: 385
  7. Semsarzadeh MA, Ghalei B, Fardi M, Esmaeeli M, Vakili E (2014) The influence of nanoparticles on gas transport properties of mixed matrix membranes: An experimental investigation and modeling. Korean J Chem Eng 31: 841
  8. Soleymanipour SF, Saeedi Dehaghani AH, Pirouzfar V, Alihosseini A(2016) The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. J Appl Polym Sci 133: 48839-43847
  9. Alihosseini A, Dadfar E, Aibod S (2015) Synthesis and characterization of novel poly (Amide-imide) nanocomposite/silicate paricles based on N-pyromellitimido-L-phenyl alanine containing sulfone moieties. J Appl Chem Sci Int 3: 84-92
  10. Rahmanian B, Pakizeh M, Mansoori SAA, Abedini R (2011) Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. J Hazard Mater 187: 67-74
  11. Hassanajili S, Masoudi E, Karimi G, Khademi MA (2013) Mixed matrix membranes based on polyetherurethane and polyesterurethane containing silica nanoparticles for separation of CO2/CH4 gases. Sep Purif Technol 116: 1–12
  12.  He Z, Pinnau I, Morisato A (2002) Nanostructured (poly4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination 146: 11-15
  13. Abedini R, Omidkhah M, Dorosti F (2014) Highly permeable (poly 4-methyl-1-pentyne)/ NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation. Int J Hydrogen Energy 4: 36522-36537
  14. Abedini R, Omidkhah M, Dorosti F (2015) Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid® 5218. J Natur Gas Sci Eng 25: 88-102
  15. Morisato H, Pinnau I (1996) Synthesis and gas permeation properties of (poly4-methyl-2- pentyne). J Membr Sci 121: 243-250
  16. Moghadam F, Omidkhah MR, Vasheghani- Farahani E, Pedram MZ (2011) The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separ Purif Technol 77: 128-136
  17. Matteucci S, Kusuma VA, Swinnea S, Freeman BD (2008) Gas transport properties of MgO filled (poly1-trimethylsilyl-1-propyne) nano composites. Polymer Nanocomposites 49: 1659- 1675
  18. Momeni SM, Pakizeh M (2013) Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane. Brazilian J Chem Eng 30: 589-597
  19. Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membrane Sci 314: 123-133
  20. Zhao J, Wang Z, Wang J, Wang S (2012) A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. J Membr Sci 403-404: 203-215
  21. Askari M, Chung T-S (2013) Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J Membr Sci 444: 173 183
  22. Li Y, Wang S, He G, Wu H, Pan F, Jiang Z (2015) Facilitated transport of small molecules and ions for energy-efficient membranes. Chem Soc Rev 44: 103-118
  23. Abedini R, Omidkhah.MR, Dorosti F (2014) CO2/ CH4 separation by a mixed matrix membrane of polymethylpentyne/MIL-53 particles, Iranian J Polym Sci Technol 27: 337-351
  24. Zhongde D, Lu B, Karoline NH, Xiangping Z, Suojiang Z, Liyuan D (2014) Pebax®/TSIL blend thin film composite membranes for CO2 separation. Sci China Chem 59: 538-546
  25. Rodenas T, van Dalen M, Serra-Crespo P, Kapteijn F, Gascon (2014) Influence of filler pore structure and polymer on the performance of MOF-based mixed-matrix membranes for CO2 capture. J Micropor Mesopor Mater192: 35-42
  26. Ge L, Zhou W, Rudolph V, Zhu Z (2013) Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. J Mater Chem A 1: 6350-6358
  27.  Wong KC, Goh PS, Ismail AF (2016) Thin film nanocomposite: the next generation selective membrane for CO2 removal. J Mater Chem A 41: 130-139
  28. Hwang S, Chi WS, Lee SJ, Im SH, Kim JH, Kim (2015) Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. J Membr Sci: 480, 11- 19
  29. Kılıç A, Atalay-Oral Ç, Sirkecioğlu A, Tantekin- Ersolmaz ŞB, Ahunbay MG (2015) Sod-ZMOF/ Matrimid® mixed matrix membranes for CO2 separation J Membr Sci 489:81-89
  30. Nikolaeva D, Azcune I, Sheridan E, Sandru M, Genua A, Tanczyk M, Jaschik M, Warmuzinski K, Jansen JC, Vankelecom I F J (2017) Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO2 capture from flue gas 37: 121-129
  31. Wang S, Tian Z, Feng J, Wu H, Li Y, Liu Y, Li X, Xin Q, Jiang Z (2015) Enhanced CO2 separation properties by incorporating poly (ethylene glycol)-containing polymeric sub microspheres into polyimide membrane. J Membr Sci 473: 310-317
  32. Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H (2015) High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. J Membr Sci 495: 72-80
  33. Li X, Wang M, Wang S, Li Y, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B (2015) Efficient CO2 capture by functionalized graphene oxide Nano sheets as fillers to fabricate multi-perm selective mixed matrix membranes ACS applied materials & interfaces 7: 5528-5537
  34. Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W (2016) UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci 513: 155-165
  35. Mitra T, Bhavsar RS, Adams DJ, Budd PM, Cooper AI (2016) PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chemi Commun 52: 5581-5584
  36. Dong L, Chen M, Li J, Shi D, Dong W, Li X, Bai Y(2016) Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J Membr Sci 520: 801-811
  37. Tien-Binh N, Vinh-Thang H, Chen, XY, Rodrigue D, Kaliaguine S (2016) Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J Membr Sci 520: 941- 950
  38. Gholami M, Mohammadi T, Mosleh S, Hemmati M (2017) CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chemical Papers 71: 1839-1853