Tannaz Shahsavari-Badvestani; Reza Jahanmardi; Mohammad Iman Tayouri; Mansour Fathi
Abstract
In the present study, the thermal oxidation behaviour of high-density polyethylene (HDPE) containing each of two types of oxidized polyethylene (OPE), one prepared using 500 ppm of iron (III) stearate as pro-oxidant and the other without the pro-oxidant, was investigated. Fourier-transform infrared spectroscopy ...
Read More
In the present study, the thermal oxidation behaviour of high-density polyethylene (HDPE) containing each of two types of oxidized polyethylene (OPE), one prepared using 500 ppm of iron (III) stearate as pro-oxidant and the other without the pro-oxidant, was investigated. Fourier-transform infrared spectroscopy (FTIR) showed that the carbonyl index of the HDPE increased from 1.03 to 6.37 upon the addition of 5.0 wt.% of OPE containing the pro-oxidant after 100 h of thermo-oxidative aging at 90°C. Moreover, it was observed that the rate of changes in retained tensile strength and retained elongation-at-break of the HDPE during the thermal oxidation increased in the presence of 5.0 wt.% of each type of OPE, especially, the one containing iron (III) stearate, which was consistent with the obtained data from gel content measurements. Lastly, the evolution in crystallinity of the film samples was monitored by density measurements as well as differential scanning calorimetry (DSC). It was revealed that the crystallinity of the tested films during thermo-oxidative degradation grows faster in the presence of OPE. Overall, the findings indicated that the utilization of OPE containing trace amounts of iron (III) stearate can accelerate the thermal oxidation of HDPE films and facilitate entering the final biodegradation stage, while resolving the need to use high concentrations of harmful heavy metal salts.
Polyolefin degradation
Soheyl Khajehpour-Tadavani; Gholam-Reza Nejabat; Mohammad-Mahdi Mortazavi
Abstract
Crystallinities of high-density polyethylene (HDPE) films containing various amounts of an oxo-biodegradable additive (HES-W) were investigated immediately after preparation and 6 weeks after ultraviolet (UV) irradiation (λ=254 nm). HDPE granules were mixed with oxo-biodegradable masterbatch in ...
Read More
Crystallinities of high-density polyethylene (HDPE) films containing various amounts of an oxo-biodegradable additive (HES-W) were investigated immediately after preparation and 6 weeks after ultraviolet (UV) irradiation (λ=254 nm). HDPE granules were mixed with oxo-biodegradable masterbatch in a twin-screw extruder and the extrudates were converted into films with thicknesses of 35±5 micrometers. The films were exposed to UV light for 6 weeks. Crystallinities of the films are investigated by X-ray diffraction spectroscopy (XRD) and differential scanning calorimetry (DSC). The XRD results show that upon UV exposure, the crystallinities of the films enhance. The DSC thermograms have confirmed the XRD results and also show a decrease in melting points of the samples after UV exposure. Further investigations on viscosity average molecular weights (Mv) of the samples show that their Mv decrease sharply after UV exposure. Scanning electron microscopy (SEM) shows clear cracks on the samples surfaces after 6 weeks exposure to UV irradiation. Investigating the functionalities of the polymers through Fourier transform infrared spectroscopy (FTIR) show the emergence of carbonyl peaks after UV irradiation so that the carbonyl index of the samples increases. It is concluded that maximum oxo-biodegradation enhancement of the HDPE film samples can be achieved by using a specific amount of the oxo-compound (3 wt%); furthermore the crystallinities of the samples show considerable enhancement after UV exposure which can be due to better packing ability of low molecular weight chains along with probable dipole-dipole attractions between the carbonyl groups on different newly formed short polar chains.