Catalysis
Liang Zhu; Xuelian He; Ruihua Cheng; Zhen Liu; Ning Zhao; Boping Liu
Abstract
SiO2/MgCl2 (ethoxide type)/TiCl4 Ziegler-Natta catalysts for use in ethylene polymerization and ethylene/1-hexene copolymerization have been prepared using silica with a supported layer of magnesium ethoxide (Mg(OEt)2) as a catalyst precursor, followed by treating with TiCl4 at different Ti/Mg ...
Read More
SiO2/MgCl2 (ethoxide type)/TiCl4 Ziegler-Natta catalysts for use in ethylene polymerization and ethylene/1-hexene copolymerization have been prepared using silica with a supported layer of magnesium ethoxide (Mg(OEt)2) as a catalyst precursor, followed by treating with TiCl4 at different Ti/Mg molar ratios, which showed significant effects on the active centers and pore structures of the catalysts. The formation amount of β-MgCl2 carrier increased to a maximum with increasing the Ti/Mg molar ratio from 1.50 to 2.25, and then decreased with the further increasing of Ti/Mg molar to 2.50. When the Ti/Mg molar ratio reached 2.25, the catalyst showed the best performance of polymerization, which could be attributed to the most active centers, high surface area and loose surface structure, mainly owing to the high conversion of Mg(OEt)2 to β-MgCl2. The polymers obtained showed medium and high molecular weight (Mw) with medium molecular weight distribution (MWD). In contrast to the conventional Mg(OEt)2-based ZN catalysts, the sphericity of particles was easy to control in this bi-supported catalyst. Furthermore, the prepared catalysts exhibited rather high activity, good copolymerization ability and hydrogen response.
Catalysis
Qiaoqiao Sun; Ruihua Cheng; Zhen Liu; Xuelian He; Ning Zhao; Boping Liu
Abstract
Chromium-vanadium (Cr-V) bimetallic catalysts are prepared by the introduction of vanadium into the Phillips catalyst which is one of the most significant industrial ethylene polymerization catalysts for tuning the Phillips catalyst performances and improving polyethylene properties. In the present work, ...
Read More
Chromium-vanadium (Cr-V) bimetallic catalysts are prepared by the introduction of vanadium into the Phillips catalyst which is one of the most significant industrial ethylene polymerization catalysts for tuning the Phillips catalyst performances and improving polyethylene properties. In the present work, titanium species were introduced into the fluorine-modified chromium-vanadium bimetallic catalysts (Cr-V-F) and the prepared catalysts were systematically explored. The element content results of multi-component catalysts showed that a competitive inhibition interaction existed between chromium and vanadium, whereas chromium was more preferable to attach to the Ti-SiO2 than vanadium. In addition, ethylene homopolymerization and ethylene/1-hexene copolymerization were carried out and examined with different catalysts. The introduction of titanium into fluorine-modified bimetallic catalysts enhanced the molecular weight (MW) and broadened the molecular weight distribution (MWD) of polyethylene. The MW of the titanium- and fluorine-modified bimetallic catalysts (Cr-V-F/Ti) firstly rose up and then dropped down with the increasing of the Al/Cr molar ratio. The Cr-V-F/Ti catalysts showed slightly depressed hydrogen response and incorporation of 1-hexene. The short-chain branch distribution (SCBD) results, which were characterized by TREF/SSA, showed that the introduction of the titanium species increased the SCB content in low MW fractions and decreased the SCB content in the high Mw fractions of ethylene/1-hexene copolymers obtained from (Cr-V-F/3Ti)600 in contrast to that from (Cr-V-F)600.
Characterization
Ning Zhao; Ruihua Cheng; Qi Dong; Xuelian He; Zhen Liu; Shiliang Zhang; Minoru Terano; Boping Liu
Abstract
SiO2-supported silyl chromate catalyst is an important industrial catalyst for production of high grade HDPE pipe materials. The control of the short chain branch (SCB) distribution using this catalyst system is still a great challenge. In this work, ethylene and 1-hexene copolymers were synthesized ...
Read More
SiO2-supported silyl chromate catalyst is an important industrial catalyst for production of high grade HDPE pipe materials. The control of the short chain branch (SCB) distribution using this catalyst system is still a great challenge. In this work, ethylene and 1-hexene copolymers were synthesized using SiO2-supported silyl chromate catalyst combined with triisobutylaluminium (TIBA), triethylaluminium (TEA) and mixed TIBA/TEA at molar ratio 1:1 (TIBA/TEA/1:1) as three different Al-alkyl co-catalysts.The temperature rising elution fractionation (TREF) and successive self-nucleation and annealing (SSA, by DSC) methods were combined to analyze the short chain branch distribution (SCBD) of these ethylene/1-hexene copolymers. The results showed that different types of co-catalyst had a great influence on SCBD of ethylene/1-hexene copolymers. The copolymer produced with TIBA showed better SCBD than the copolymer produced with TEA, and the copolymer produced with TIBA/ TEA/1:1 showed a SCBD in between those with TIBA and TEA.