Olefin oligomerization
Tanja H. Ritter; Helmut G. Alt
Abstract
Nine different bis(arylimino)pyridine complexes of Fe(III) with different halide substituents (F, Cl, Br, I) at different positions of the iminophenyl group of the ligand have been synthesized, characterized and applied for homogeneous 1-pentene and 1-hexene oligomerization and co-oligomerization reactions ...
Read More
Nine different bis(arylimino)pyridine complexes of Fe(III) with different halide substituents (F, Cl, Br, I) at different positions of the iminophenyl group of the ligand have been synthesized, characterized and applied for homogeneous 1-pentene and 1-hexene oligomerization and co-oligomerization reactions after activation with methylaluminoxane (MAO). The best activity in 1-hexene oligomerization (152 kg/mol.h) was observed for 4/ MAO with an iodine substituent in para position of the iminophenyl group. Fluorine substituents in the meta position of the iminophenyl group proved as disadvantageous (1 kg/mol.h) in homo-oligomerization reactions but advantageous in co-oligomerization reactions of 1-pentene and 1-hexene. Obviously, tiny electronic or steric differences at the active sites of the corresponding catalysts are responsible for this result (structure-property relationship). The product distributions of the co-dimerization reactions of 1-pentene and 1-hexene reflected a binominal behaviour with dominating co-products. The ratio of dimers is 1:2:1 (C10:C11:C12) while the trimers (pentadecenes up to octadecenes) show proportions of 1:3:3:1.
Olefin oligomerization
Tanja H. Ritter; Helmut G. Alt
Abstract
1-Pentene, respectively 1-hexene, were reacted with 13 homogeneous metallocene catalysts to give linear oligomerization products, predominantly dimers, with selectivities above 90%. The product distributions of the codimerization reactions of 1-pentene with 1-hexene reflected a binomial behaviour. Therefore, ...
Read More
1-Pentene, respectively 1-hexene, were reacted with 13 homogeneous metallocene catalysts to give linear oligomerization products, predominantly dimers, with selectivities above 90%. The product distributions of the codimerization reactions of 1-pentene with 1-hexene reflected a binomial behaviour. Therefore, the ratio for dimers is 1:2:1 (C10:C11:C12) while the trimers (pentadecenes up to octadecenes) show a proportion of 1:3:3:1. By changing the ratio of the 1-pentene/1-hexene mixture, the binomial distribution switched to the side of products of the higher concentrated monomer. Even when using methyl branched olefins, the binomial product distribution could be observed. Alkenes with an internal double bond could not be dimerized under these conditions. The reactions with olefins containing a methyl group in β-position, a tert-butyl group or a neopentyl group failed. Addition of appropriate additives like tributylphosphine or aluminum powder raised both the activities and the selectivities for dimers, which means that the fraction of undecenes obtained from the codimerization reactions of 1-pentene and 1-hexene increased.