Document Type : Original research
Author
Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
Abstract
Activity of 111 surface of PtGa alloy in which three atom Pt centers are covered by In atoms is investigated as single atom Pt catalyst of propane dehydrogenation (PDH) by using quantum mechanical (QM) calculations. Periodic density functional theory (DFT) is applied in these calculations, utilizing PBE exchange-correlation functional with plane wave basis set of 680eV kinetic energy cut off. Calculated results give adsorption and conversion energies of propane to propylene including adsorption energies of intermediate states. Adsorption energies span is from -6 kJ/mole for propane up to -500 kJ/mole for CH3CH2CH2 radical. Catalyzed propane to propylene’s conversion energy is about -135 kJ/mole in comparison to about 150 kJ/mole of gas phase. Moderate adsorption energy value of about -120 kJ/mole for propylene and its higher conversion energy value of about 160 kJ/mole to CH3CH*CH2 intermediate guarantee propylene slectivity and break of conversion chain after its formation. Lower activation energy values of first and second C—H breaks show that PDH reaction on this prposed catalyst is much faster than previously reported one in which three atom Pt centers were covered by toxic Pb atoms.
Keywords
Main Subjects
- Bell AT, Alger MM, Flytzani-Stephanopoulos M, Gunnoe TB, Lercher JA, Stevens J, Alper J, Tran C (2016) The changing landscape of hydrocarbon feedstocks for chemical production: Implications for catalysis. In: National academies of sciences, engineering, and medicine, Washington, DC, USA
- Otroshchenko T, Jiang G, Kondratenko VA, Rodemerck U, Kondratenko EV (2021) Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem Soc Rev 50: 473-527 [CrossRef]
- Yang F, Zhang J, Chen J, Wang G, Yu T, Li Q, Shi Z, Sun Q, Zhuo R, Wang R (2024) Boosting propane dehydrogenation of defective S-1 stabilized single-atom Pt and ZnO catalysts via coordination environment regulation. Nano Res 17: 5884-5896 [CrossRef]
- Nakaya Y, Furukawa S (2022) Tailoring single‐atom platinum for selective and stable catalysts in propane dehydrogenation. ChemPlusChem 87: e202100560 [CrossRef]
- Liu X, Wang X, Zhen S, Sun G, Pei C, Zhao Z, Gong J (2022) Support stabilized PtCu single-atom alloys for propane dehydrogenation. Chem Sci 13: 9537-9543 [CrossRef]
- Yang Y, Liu Q, Wang J, Li P, Miao C, Liu J, Yang Y, Wang J, Wang X (2024) Hydroxy‐ or chlorine‐anchored Pt single‐atom in Al2O3: Which is better for propane dehydrogenation?. AIChE J 70: e18288 [CrossRef]
- Dong C, Lai Z, Wang H (2023) Comprehensive mechanism and microkinetic model-driven rational screening of 3N-modulated single-atom catalysts for propane dehydrogenation. ACS Catal 13: 5529-5537 [CrossRef]
- Zhao Q, Chen L, Ma S, Liu Z (2025) Data-driven discovery of Pt single atom embedded germanosilicate MFI zeolite catalysts for propane dehydrogenation. Nat Commun 16: 372 [CrossRef]
- Lin J, Shen M, Zhang C, Bi S, Shen G, Gao F, Li W (2025) Active and stable platinum-indium single atom alloy catalysts for propane dehydrogenation. Chem Eng J 519 : 165243 [CrossRef]
- Xing Y, Kang L, Ma J, Jiang Q, Su Y, Zhang S, Xu X, Li L, Wang A, Liu Z, Ma S, Liu XY, Zhang T (2023) Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation. Chinese J Catal 48: 164-174 [CrossRef]
- Nakaya Y, Hayashida E, Asakura H, Takakusagi S, Yasumura S, Shimizu K, Furukawa S (2022) High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J Am Chem Soc 144(35): 15944-15953 [CrossRef]
- Dong C, Lai Z, Wang H (2024) Design of MoS2 edge-anchored single-atom catalysts for propane dehydrogenation driven by DFT and microkinetic modeling. Phys Chem Chem Phys 26: 5303-5310 [CrossRef]
- Jin D, Xu H, Zhu J, Cheng D (2023) Activation of Cr2O3 for propane dehydrogenation by doping with Pt single-atom promotor. Mol Catal 551: 113624 [CrossRef]
- Nakaya Y, Hirayama J, Yamazoe S, Shimizu K, Furukawa S (2020) Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat Commun 11: 2838 [CrossRef]
- Sun G, Zhao Z, Mu R, Zha S, Li L, Chen S, Zang K, Luo J, Li Z, Purdy SC, Kropf AJ, Miller JT, Zeng L, Gong J (2018) Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat Commun 9: 4454 [CrossRef]
- Marcinkowski MD, Darby MT, Liu J, Wimble JM, Lucci FR, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH (2018) Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat Chem 10: 325-332 [CrossRef]
- Xiong C, Dai S, Wu Z, Jiang D (2022) Single atoms anchored in hexagonal boron nitride for propane dehydrogenation from first principles. ChemCatChem 9/2022). ChemCatChem 14: e202200465 [CrossRef]
- Chang QY, Wang KQ, Sui ZJ, Zhou XG, Chen D, Yuan WK, Zhu YA (2021) Rational design of single-atom-doped Ga2O3 catalysts for propane dehydrogenation: Breaking through volcano plot by Lewis acid-base interactions. ACS Catal 11: 5135-5147 [CrossRef]
- Zhang W, Guo J, Ma H, Wen J, He C (2022) Anchoring of transition metals to CN as efficient single-atom catalysts for propane dehydrogenation. Chem Phys Lett 809: 140154 [CrossRef]
- Qu Z, He G, Zhang T, Fan Y, Guo Y, Hu M, Xu J, Ma Y, Zhang J, Fan W, Sun Q, Mei D, Yu J (2024) Tricoordinated single-atom cobalt in zeolite boosting propane dehydrogenation. J Am Chem Soc 146: 8939-8948 [CrossRef]
- Zhang Y, Shi S, Wang Z, Lan H, Liu L, Sun Q, Guo G, He X, Ji H (2024) Propane dehydrogenation on Ir single‐atom catalyst modified by atomically dispersed Sn promoters in silicalite‐1 zeolite. AIChE J 70: e18431 [CrossRef]
- Zhang Q, Jiang X, Su Y, Zhao Y, Qiao B (2024) Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts. Chinese J Catal 57: 105-113 [CrossRef]
- Ma R, Dean DP, Gao J, Wang M, Liu Y, Liang K, Wang J, Miller JT, Zhou B, Zou G, Kou J (2024) Lattice-embedded Ni single-atom catalyst on porous Al2O3 nanosheets derived from Ni-doped carbon dots for efficient propane dehydrogenation. Appl Catal B- Environ Energy 347: 123798 [CrossRef]
- Guo L, Shi D, Zhang T, Ma Y, Qi G, Xu J, Sun Q (2025) Unsaturated cobalt single-atoms stabilized by silanol nests of zeolites for efficient propane dehydrogenation. Chinese J Catal 72: 323-333 [CrossRef]
- Kang L, Zhu B, Gu Q, Duan X, Ying L, Qi G, Xu J, Li L, Su Y, Xing Y, Wang Y, Li G, Li R, Gao Y, Yang B, Liu XY, Wang A, Zhang T (2025) Light-driven propane dehydrogenation by a single-atom catalyst under near-ambient conditions. Nat Chem 17: 890-896 [CrossRef]
- Chen J, Yue Y, Liu W (2025) Harnessing light for propane dehydrogenation: a single-atom catalyst milestone achieved under mild conditions. Sci China Chem 68: 2776-2778 [CrossRef]
- Chernov AN, Sobolev VI, Gerasimov EY, Koltunov KY (2022) Propane dehydrogenation on Co-N-C/SiO2 catalyst: The role of single-atom active sites. Catalysts 12: 1262 [CrossRef]
- Cao L, Dai P, Zhu L, Yan L, Chen R, Liu D, Gu X, Li L, Xue Q, Zhao X (2020) Graphitic carbon nitride catalyzes selective oxidative dehydrogenation of propane. Appl Catal B- Environ 262: 118277 [CrossRef]
- Huš M, Kopač D, Likozar B (2020) Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations. J Catal 386: 126-138 [CrossRef]
- Chen S, Pei C, Chang X, Zhao Z, Mu R, Xu Y, Gong J (2020) Coverage‐dependent behaviors of vanadium oxides for chemical looping oxidative dehydrogenation. Angew Chem Int Ed 59: 22072-22079 [CrossRef]
- Wang P, Senftle TP (2021) Theoretical insights into non-oxidative propane dehydrogenation over Fe3C. Phys Chem Chem Phys 23: 1401-1413 [CrossRef]
- Wang T, Cui X, Winther KT, Abild-Pedersen F, Bligaard T, Nørskov JK (2021) Theory-aided discovery of metallic catalysts for selective propane dehydrogenation to propylene. ACS Catal 11: 6290-6297 [CrossRef]
- Xie Z, Li Z, Tang P, Song Y, Zhao Z, Kong L, Fan X, Xiao X (2021) The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation. J Catal 397: 172-182 [CrossRef]
- Liu J, Luo W, Yin Y, Fu X, Luo J (2021) Understanding the origin for propane non-oxidative dehydrogenation catalysed by d2-d8 transition metals. J Catal 396: 333-341 [CrossRef]
- Sun X, Xue J, Ren Y, Li X, Zhou L, Li B, Zhao Z (2021) Revealing nature of active site and reaction mechanism of supported chromium oxide catalyst in propane direct dehydrogenation. Mol Catal 505: 111520 [CrossRef]
- Sharma L, Jiang X, Wu Z, Baltrus J, Rangarajan S, Baltrusaitis J (2021) Elucidating the origin of selective dehydrogenation of propane on γ-alumina under H2S treatment and co-feed. J Catal 394: 142-156 [CrossRef]
- Castro-Fernández P, Mance D, Liu C, Moroz IB, Abdala PM, Pidko EA, Copéret C, Fedorov A, Müller CR (2021) Propane dehydrogenation on Ga2O3-based catalysts: Contrasting performance with coordination environment and acidity of surface sites. ACS Catal 11: 907-924 [CrossRef]
- Ye C, Peng M, Cui T, Tang X, Wang D, Jiao M, Miller JT, Li Y (2023) Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Res 16: 4499-4505 [CrossRef]
- Xiao L, Shan Y, Sui Z, Chen D, Zhou X, Yuan W, Zhu Y (2020) Beyond the reverse Horiuti–Polanyi mechanism in propane dehydrogenation over Pt catalysts. ACS Catal 10: 14887-14902 [CrossRef]
- Araujo-Lopez E, Vandegehuchte BD, Curulla-Ferré D, Sharapa DI, Studt F (2020) Trends in the activation of light alkanes on transition-metal surfaces. J Phys Chem C 124: 27503-27510 [CrossRef]
- Abdelgaid M, Dean J, Mpourmpakis G (2020) Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping. Catal Sci Technol 10: 7194-7202 [CrossRef]
- Wang Z, Chen Y, Mao S, Wu K, Zhang K, Li Q, Wang Y (2020) Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv Sustain Syst 4: 2000092 [CrossRef]
- Fan X, Liu D, Sun X, Yu X, Li D, Yang Y, Liu H, Diao J, Xie Z, Kong L (2020) Mn-doping induced changes in Pt dispersion and PtxMny alloying extent on Pt/Mn-DMSN catalyst with enhanced propane dehydrogenation stability. J Catal 389: 450-460 [CrossRef]
- Liu Z, Li Z, Li G, Wang Z, Lai C, Wang X, Pidko EA, Xiao C, Wang F, Li G (2020) Single-atom Pt+ derived from the laser dissociation of a platinum cluster: Insights into nonoxidative alkane conversion. J Phys Chem Lett 11: 5987-5991 [CrossRef]
- Li A, Tian D, Zhao Z (2020) DFT studies on the reaction mechanism for the selective oxidative dehydrogenation of light alkanes by BN catalysts. New J Chem 44: 11584-11592 [CrossRef]
- Chang Q, Wang K, Hu P, Sui Z, Zhou X, Chen D, Yuan W, Zhu Y (2020) Dual-function catalysis in propane dehydrogenation over Pt1-Ga2O3 catalyst: Insights from a microkinetic analysis. AIChE J 66: e16232 [CrossRef]
- Aly M, Fornero EL, Leon-Garzon AR, Galvita VV, Saeys M (2020) Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 ACS Catal 10: 5208-5216 [CrossRef]
- Purdy SC, Ghanekar P, Mitchell G, Kropf AJ, Zemlyanov DY, Ren Y, Ribeiro F, Delgass WN, Greeley J, Miller JT (2020) Origin of electronic modification of platinum in a Pt3V alloy and its consequences for propane dehydrogenation catalysis. ACS Appl Energy Mater 3:1410-1422 [CrossRef]
- Fogler H (1999) Elements of chemical reaction engineering, 3rd In.: Prentice Hall International, Inc, New Jersey.
- Zhang T, Lang X, Dong A, Wan X, Gao S, Wang L, Wang L, Wang W (2020) Difference of oxidation mechanism between light C3-C4 alkane and alkene over mullite YMn2O5 oxides catalyst. ACS Catal 10: 7269-7282 [CrossRef]
- Ma F, Chang QY, Yin Q, Sui ZJ, Zhou XG, Chen D, Zhu YA (2020) Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis. Catal Sci Technol 10: 4938-4951 [CrossRef]
- Zhang J, Zhou RJ, Chang QY, Sui JZ, Zhou XG, Chen D, Zhu YA (2021) Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: A DFT study. Catal Today 368: 46-57 [CrossRef]
- Chen S, Chai Y, Chen Y, Wei F, Pan X, Lin J, Lin S (2024) Peripheral P doping in Zn1/NC single-atom catalyst to enhance propane dehydrogenation reaction. Chem Eng Sci 291: 119919 [CrossRef]
- Wei F, Cao L, Ge B, Chen Y, Pan X, Chai Y, Jing R, Hu X, Wang X, Lin J, Lin S (2025) Regulating peripheral nitrogen dopants in single‐atom catalysts to enhance propane dehydrogenation. Angew Chem 137: e202416912 [CrossRef]
- Pan J, Strugovshchikov E, Salóm-Català A, Novell-Leruth G, Kaźmierczak K, Curulla-Ferré D, Carbó JJ, Godard C, Ricart JM (2025) Propane dehydrogenation on Pt single-atom and Pt4 and Pt3Sn single-cluster supported on g-C3N4: A theoretical study. J Phys Chem C 129: 2477-2487 [CrossRef]
- Song W, Kang Y, Yang M, Li Z, Chen L, Zhao Z, Liu J (2022) Promoting propane dehydrogenation via strain engineering on iridium single-atom catalyst. Fuel 311: 122580 [CrossRef]
- Sun S, Sun G, Pei C, Zhao Z, Gong J (2021) Origin of performances of Pt/Cu single-atom alloy catalysts for propane dehydrogenation. J Phys Chem C 125: 18708-18716 [CrossRef]
- Hannagan RT, Giannakakis G, Réocreux R, Schumann J, Finzel J, Wang Y, Michaelides A, Deshlahra P, Christopher P, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH (2021) First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 372: 1444-1447 [CrossRef]
- Bhargava M, Gadalla A, Schubert K (1975) Koexistente phasen vom FeSi-Typ in den mischungen Ni-Pd-Ga und Ni-Pt-Ga. J Less-Common Met 42: 69-76 [CrossRef]
- Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14: 2717-2744 [CrossRef]
- Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong W (2010) NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181: 1477-1489 [CrossRef]
- Farjoo A, Khorasheh F, Niknaddaf S, Soltani M (2011) Kinetic modeling of side reactions in propane dehydrogenation over Pt - Sn/γ - Al2O3 catalyst. Sci Iran 18: 458-464 [CrossRef]