Valorization of bagasse/polypropylene nanocomposites via nanosilica and mercerization treatments

Document Type : Original research

Authors

1 1Department of Wood and Paper Science and Technology, Faculty of Natural Resources, Semnan University, Semnan 35196-45399, Iran

2 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, 35196-45399, Iran

Abstract

The ever-increasing environmental constraints over waste disposal led us to study the feasibility of valorizing bagasse/ polypropylene composites via nanosilica and mercerization treatments. Water absorption and thickness swelling of the nanocomposites improved due to the barrier properties of nanosilica particles. FTIR spectra revealed decreased hydroxyl groups as well as carbonyl groups disappearance after alkali treatment. Except for impact strength, the combined nanosilica-mercerization treatment could enhance the mechanical performance of the biocomposites. Thermogravimetric analysis showed higher degradation temperatures and residual char yields after the combined nanosilica-mercerization treatment. Furthermore, differential scanning calorimetry indicated that the individual mercerization and nanosilica treatments had no distinct effect on the thermal performance of the composites, whereas the combined treatment brought about marked improvements in the given properties, e.g; melting and crystallization temperatures and crystallinity rate. The present study introduces a novel technique to valorize a totally waste-based bagasse/ polypropylene composite material holding a promising potential for various industrial applications.

Keywords

Main Subjects


  1. Nadali E, Karimi A, Tajvidi M, Naghdi R (2010) Natural durability of a bagasse fiber/ polypropylene composite exposed to rainbow fungus (coriolus versicolor). J Reinf Plast Compos 29: 1028-1037 [CrossRef]
  2. Naghdi R, Karimi AN, Jahan Latibari A, Hamzeh Y, Mirshokraie SA, Nadali E (2013) Biological removal of chloro-organic compounds from bagasse soda pulp bleaching effluent by Coriolus versicolor. Global NEST J 15: 29-36 [CrossRef]
  3. Naghdi R, Nadali E, Younesi Kordkheili H (2015) Evaluation of pulp and paper properties obtained from maple juvenile wood through organosolv alcohol method catalyzed by calcium and magnesium salts. Iran J Wood Paper Ind 6: 31-40 [CrossRef]
  4. Nadali E, Layeghi M, Ebrahimi G, Naghdi R, Jonoobi M, Khorasani MM, Mirbagheri Y (2018) Effects of multiple extrusions on structure-property performance of natural fiber high-density polyethylene biocomposites. Mat Res 21 [CrossRef]
  5. Nadali E, Tajvidi M, Naghdi R (2021) Effects of fungal biodegradation on structure–property relationships of medium density fibre board and hybrid polypropylene composite made from sugar-cane residue. Int Wood Prod J 12: 152-163 [CrossRef]
  6. Naghdi R, Karimi A, Latibari A, Mirshokrayi S (2009) Evaluation of the effect of rainbow fungus (coriolus versicolor) bleach plant effluent color reduction. Iran J Natural Resources 61: 989-995
  7. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43: 1419-1429 [CrossRef]
  8. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8: 313-343 [CrossRef]
  9. Saxena M, Pappu A, Haque R, Sharma A (2011). Sisal fiber based polymer composites and their applications. In:Cellulose Fibers: Bio- and Nano-Polymer Composites. Ed(s): S. Kalia, B.S. Kaith, I. Kaur, Springer, pp: 589-659 [CrossRef]
  10. Naghdi R (2021) Advanced natural fibre-based fully biodegradable and renewable composites and nanocomposites: A comprehensive review. Int Wood Prod J 12: 178-193 [CrossRef]
  11. Yonesi Korekhili H, Naghdi R, Amiri M (2015) The effect of nanoclay on physicochemical, mechanical and thermal properties of new urea-glyoxal resin. Iranian Journal of Wood and Paper Industries 6: 133-143
  12. Yousefi S, Kartoolinejad D, Naghdi R (2017) Effects of priming with multi-walled carbon nanotubes on seed physiological characteristics of Hopbush (DodonaeaviscosaL.) under drought stress. Int J Environ Stud 74: 528-539 [CrossRef]
  13. Nejat T, Jalalinezhad P, Hormozi F, Bahrami Z (2019) Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support. J Taiwan Ins Chem Eng 97: 216-226 [CrossRef]
  14. Shariati M, Farzi G, Dadrasi A (2015) Mechanical properties and energy absorption capability of thin-walled square columns of silica/epoxy nanocomposite. Constr Build Mater 78: 362-368 [CrossRef]
  15. Nourbakhsh A, Farhani Baghlani F, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Ind Crops Prod 33: 183-187 [CrossRef]
  16. Ashori A (2013) Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. J Compos Mater 47: 149-154 [CrossRef]
  17. Nadali E, Naghdi R (2022) Effects of multiple extrusions on structure–property relationships of hybrid wood flour/poly (vinyl chloride) composites. J Thermoplast Compos Mater 35: 1076-1093 [CrossRef]
  18. Jiang J, Mei C, Pan M, Cao J (2020) Improved mechanical properties and hydrophobicity on wood flour reinforced composites: Incorporation of silica/montmorillonite nanoparticles in polymers. Polymer Composites 41: 1090-1099 [CrossRef]
  19. Gunwant D (2024) Moisture resistance treatments of natural fiber-reinforced composites: a review. Compos Interfaces 31: 979-1047 [CrossRef]
  20. Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH (2010) Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean J Chem Eng 27: 651-657 [CrossRef]
  21. Ke YC, Stroeve P (2005) Polymer-layered silicate and silica nanocomposites. In: Polymer-layered silicate and silica nanocomposites, Elsevier, pp: 119-209 [CrossRef]
  22. Amjad A, Abidin MSZ, Alshahrani H, Rahman AAA(2021) Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/PLA fibre reinforced epoxy hybrid nanocomposite. Polymers 13: 3842 [CrossRef]
  23. Ramos VD, da Costa HM, Soares VLP, Nascimento RSV (2005) Modification of epoxy resin: a comparison of different types of elastomer. Polym Test 24: 387-394 [CrossRef]
  24. Okolie J, Nanda S, Dalai AK, Kozinski JA (2021) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz 12: 2145-2169 [CrossRef]
  25. Naghdi R, Nejat T (2023) Effects of organically-modified montmorillonite and alkalinization on physical, mechanical, chemical, morphological, and thermal properties of wheat straw/recycled polypropylene nanocomposites. J Compos Mater 57: 2127-2144 [CrossRef]
  26. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites, CRC Press [CrossRef]
  27. Yadav SM, Yusoh KB (2019) Subsurface mechanical properties and subsurface creep behaviour of modified nanoclay-based wood–plastic composites studied by nanoindentation. Polym Bull 76: 2179-2196 [CrossRef]
  28. Khanjanzadeh H, Tabarsa T, Shakeri A, Omidvar A (2011) Effect of organoclay platelets on the mechanical properties of wood–plastic composites formulated with virgin and recycled polypropylene. Wood Mater Sci Eng 6: 207-212 [CrossRef]
  29. Bartos A, Utomo BP, Kanyar B, Anggono J, Soetaredjo FE, Móczó J, Pukánszky B (2020) Reinforcement of polypropylene with alkali-treated sugarcane bagasse fibers: Mechanism and consequences. Compos Sci Technol 200: 108428 [CrossRef]
  30. Bledzki AK, Mamun AA, Volk J (2010) Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos Part A Appl Sci Manuf 41: 480-488 [CrossRef]
  31. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2023) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4: 626-639 [CrossRef]
  32. Perrone OM, Colombari FM, Rossi JS, Moretti MMS, Bordignon SE, Nunes CCC, Gomes E, Boscolo M, Da-Silva R (2016) Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresour Technol 218: 69-76 [CrossRef]
  33. Ma Z, Wang J, Zhou H, Zhang Y, Yang Y, Liu X, Ye J, Chen D, Wang S (2018) Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities. Fuel Process Technol 181: 142-156 [CrossRef]
  34. Chen C, Luo J, Qin W, Tong Z (2014) Elemental analysis, chemical composition, cellulose crystallinity, and FT-IR spectra of Toona sinensis wood. Monatsh Chemie 145: 175-185 [CrossRef]
  35. Kabir MM (2012) Effects of chemical treatments on hemp fibre reinforced polyester composites, PhD Thesis, University of Southern Queensland
  36. Raju JSN, Depoures MV, Kumaran P (2021) Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Int J Biol Macromol 186: 886-896 [CrossRef]
  37. Peng F, Ren J-L, Xu F, Bian J, Peng P, Sun R-C (2010) Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J Agric Food Chem 58: 1768-1776 [CrossRef]
  38. Sun S-F, Yang H-Y, Yang J, Shi Z-J (2022) The effect of alkaline extraction of hemicellulose on cocksfoot grass enzymatic hydrolysis recalcitrance. Ind Crops Prod 178: 114654 [CrossRef]
  39. Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym Degrad Stabil 88: 512-520 [CrossRef]
  40. Wang F, Zhou S, Yang M, Chen Z, Ran S (2018) Thermo-mechanical performance of polylactide composites reinforced with alkali-treated bamboo fibers. Polymers 10: 401 [CrossRef]
  41. El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES, Al-Shuja’a OM (2012) Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim 109: 1435-1443 [CrossRef]
  42. Hidalgo D, Castro J, Díez D, Martín-Marroquín J, Gómez M, Pérez E (2023) Torrefaction at low temperature as a promising pretreatment of lignocellulosic biomass in anaerobic digestion. Energy 263: 125822 [CrossRef]
  43. Budiyantoro C, Yudhanto F (2024) Comparative analysis of cellulose, hemicellulose and lignin on the physical and thermal properties of wood sawdust for bio-composite material fillers. Revue des composites et des matériaux avancés 34: 109-116 [CrossRef]
  44. Nabipour H, Rohani S (2024) Flame retardant properties of polymer nanocomposites based on new layered structure nanoparticles. In: Flame retardant nanocomposites, Woodhead Publishing, pp 117-158 [CrossRef]
  45. Rosa MF, Chiou B, Medeiros ES, Wood DF, Williams TG, Mattoso LHC, Orts WJ, Imam SH (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100: 5196-5202 [CrossRef]
  46. Khosravian B (2010) Studying mechanical, physical, thermal and morphological characteristics of hybrid composites of polypropylene/wood flour/wollastonite. Master’s Thesis, University of Tehran, Tehran, Iran
  47. Luyt A, Dramićanin MD, Antić Ž, Djoković V (2009) Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polym Test 28: 348-356 [CrossRef]
  48. Nurazzi NM, Asyraf MRM, Rayung M, Norrrahim MNF, Shazleen SS, Rani MSA, Shafi AR, Aisyah HA, Radzi MHM, Sabaruddin FA, Ilyas RA, Zainudin ES, Abdan K (2021) Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers 13: 2710 [CrossRef]
  49. Zhang J, Jiang DD, Wilkie CA (2006) Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay. Polym Degrad Stabil 91: 298-304 [CrossRef]
  50. Chen H, Zhang W, Wang X, Wang H, Wu Y, Zhong T, Fei B (2018) Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. J Wood Sci 64: 398-405 [CrossRef]
  51. Šoštarić T, Petrović M, Stojanović J, Marković M, Avdalović J, Hosseini-Bandegharaei A, Lopičić Z (2022) Structural changes of waste biomass induced by alkaline treatment: the effect on crystallinity and thermal properties. Biomass Conv Bioref 12: 2377-2387 [CrossRef]
  52. Parvinzadeh M, Moradian S, Rashidi A, Yazdanshenas M-E (2010) Surface characterization of polyethylene terephthalate/silica nanocomposites. Appl Surf Sci 256: 2792-2802 [CrossRef]
  53. Othman N, Ismail H, Mariatti M (2006) Effect of compatibilisers on mechanical and thermal properties of bentonite filled polypropylene composites. Polym Degrad Stabil 91: 1761-1774 [CrossRef]
  54. Vidyashri V, Lewis H, Narayanasamy P, Mahesha GT, Bhat KS (2019) Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization. Cogent Eng 6: 1708644 [CrossRef]
  55. Xiao B, Sun XF, Sun RC (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stabil 74: 307-319 [CrossRef]
  56. Liu Q, Zhong Z, Wang S, Luo Z (2011) Interactions of biomass components during pyrolysis: A TG-FTIR study. J Anal Appl Pyrol 90: 213-218 [CrossRef]
  57. Wang K, Jiang J-X, Xu F, Sun R-C, Baird M-S (2010) Influence of steam pressure on the physico-chemical properties of degraded hemicelluloses obtained from steam-exploded Lespedeza stalks. BioResources 5: 1717-1732 [CrossRef]
  58. Tan SJ, Supri AG (2016) Properties of low-density polyethylene/natural rubber/water hyacinth fiber composites: the effect of alkaline treatment. Polym Bull 73: 539-557 [CrossRef]
  • Receive Date: 08 October 2024
  • Revise Date: 01 February 2025
  • Accept Date: 04 February 2025
  • First Publish Date: 04 February 2025