Fabrication and performance evaluation of mixed matrix membrane comprising Pebax and graphene hydroxyl in olefin/paraffin separation

Document Type : Original research

Authors

EOR and Gas Processing Research Lab., Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

Propylene is a widely used compound in various industrial applications, but its separation from propane, which is often associated with it, remains a significant challenge. Among the separation methods, membrane technology, particularly polymeric membranes, offers an attractive solution due to its relatively low cos t and simplicity. In this study, hydroxyl-functionalized graphene (G─OH) nanosheets were used as an additive in a Pebax 1657 matrix. The results from Fourier Transform Infrared Spectroscopy (FTIR) revealed that the interaction between Pebax and G─OH is physical, characterized by a shift in some peaks due to hydrogen bonding. The proper dispersion of G─OH in the Pebax matrix was confirmed by Differential Scanning Calorimetry (DSC), which also showed an increase in the glass transition temperature (Tg), indicating the rigidity of Pebax chains in the presence of G─OH. Thermogravimetric Analysis (TGA) results demonstrated that the degradation temperatures (Td) of Pebax/ G─OH 1 wt.% and Pebax/G─OH 2 wt.% membranes were 335°C and 330°C, respectively. A comprehensive gas permeation study, including pure and mixed gas tests at feed pressures of 2, 6, and 10 bar, as well as a long-term stability test, was conducted on the membranes. Among all the MMMs, Pebax/G─OH 1.5 wt.% demonstrated the best gas separation performance, achieving a propylene permeability of 89.8 barrer and a C3H6/C3H8 selectivity of 9.8. Additionally, under mixed gas permeation tests (50:50 v/v of C3H6 and C3H8), this membrane exhibited a propylene permeability of 76.3 barrer and a C3H6/C3H8 selectivity of 8.8. Finally, the performance of the MMMs in C3H6/C3H8 separation was benchmarked against the Robeson upper bound curve.

Keywords

Main Subjects


  1. Chen XY, Xiao A, Rodrigue D (2022) Polymer-based membranes for propylene/propane separation. Sep Purif Rev 51: 130-142 [CrossRef]
  2. Bora P, Bhuyan C, Rajguru P, Hazarika S (2023) A Gemini basic ionic liquid and functionalized cellulose nanocrystal-based mixed matrix membrane for CO2/N2 separation. Chem Commun 59: 12887-12890 [CrossRef]
  3. Guo M, Kanezashi M (2021) Recent progress in a membrane-based technique for propylene/propane separation. Membranes 11: 310 [CrossRef]
  4. Ma X, Williams S, Wei X, Kniep J, Lin Y (2015) Propylene/propane mixture separation characteristics and stability of carbon molecular sieve membranes. Ind Eng Chem Res 54: 9824-9831 [CrossRef]
  5. Bharali P, Das I, Sarmah H, Hazarika S (2023) Stripping of carbon dioxide from ethanol solution of PAMAM dendrimer using hollow Fibre membrane contactor. Heat Mass Trans 59: 299-308 [CrossRef]
  6. Doosti M, Abedini R (2022) Polyethyleneglycol-modified cellulose acetate membrane for efficient olefin/paraffin separation. Energy Fuels 36: 10082-10095 [CrossRef]
  7. Ren Y, Liang X, Dou H, Ye C, Guo Z, Wang J, Pan Y, Wu H, Guiver MD, Jiang Z (2020) Membrane‐based olefin/paraffin separations. Adv Sci 7: 2001398 [CrossRef]
  8. Bhuyan C, Bora P, Rajguru P, Hazarika S (2025) Thin film nanocomposite membrane ornamented with Z-scheme heterojunction carbon dot/NiFe–LDH for removal of organic contaminants from industrial wastewater. Sep Purif Technol 356: 129791 [CrossRef]
  9. Faiz R, Li K (2012) Polymeric membranes for light olefin/paraffin separation. Desalination 287: 82-97 [CrossRef]
  10. Nematollahi MH, Carvalho PJ, Coutinho JAP, Abedini R (2022) Recent progress on Pebax-based thin film nanocomposite membranes for CO2 capture: The state of the art and future outlooks. Energy Fuels 36: 12367-12428 [CrossRef]
  11. Nobakht D, Abedini R (2023) A new ternary Pebax®1657/maltitol/ZIF-8 mixed matrix membrane for efficient CO2 separation. Process Saf Environ Prot 170: 709-719 [CrossRef]
  12. Hassanzadeh H, Abedini R, Ghorbani M (2022) CO2 Separation over N2 and CH4 light gases in sorbitol-modified poly(ether-block-amide) (Pebax 2533) membrane. Ind Eng Chem Res 61: 13669-13682 [CrossRef]
  13. Kheirtalab M, Abedini R, Ghorbani M (2020) A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide) (Pebax®1657)/graphene oxide nanoparticles for CO2 separation. Process Saf Environ Prot 144: 208-224 [CrossRef]
  14. Kheirtalab M, Abedini R, Ghorbani M (2024) Pebax/poly(vinyl alcohol) mixed matrix membrane incorporated by amine‐functionalized graphene oxide for CO2 separation. J Polym Sci 62: 517-535 [CrossRef]
  15. Ranjbar F, Abedini R, Ghorbani M, Ghasemi M (2022) The experimental/theoretical study over the effect of using the POP-NH2 nanostructures into the membrane selective layer on the CO2 permeability and selectivity. Chem Eng Res Des 187: 184-195 [CrossRef]
  16. Nematollahi MH, Carvalho PJ, Coutinho JAP, Abedini R (2023) Tailoring the CO2 permeation of Pebax1657/polyether imide thin film composite membrane via embedding Ag-based metal-organic framework. Chem Eng Res Des 197: 109-126 [CrossRef]
  17. Kim SY, Cho Y, Kang SW (2020) Preparation and characterization of PEBAX-5513/AgBF4/BMIMBF4 membranes for olefin/paraffin separation. Polymers 12: 1550 [CrossRef]
  18. Park CH, Lee JH, Jung JP, Kim JH (2017) Mixed matrix membranes based on dual-functional MgO nanosheets for olefin/paraffin separation. J Membrane Sci 533: 48-56 [CrossRef]
  19. Raouf M, Abedini R, Omidkhah M, Nezhadmoghadam E (2020) A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles. Process Saf Environ Prot 133: 394-407 [CrossRef]
  20. Moghadam F, Omidkhah M, Vasheghani-Farahani E, Pedram MZ, Dorosti F (2011) The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep Purif Technol 77: 128-136 [CrossRef]
  21. Fakoori M, Azdarpour A, Abedini R, Honarvar B (2021) Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane. Korean J Chem Eng 38: 121-128 [CrossRef]
  22. Bora P, Bhuyan C, Borah AR, Hazarika S (2023) Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun 59: 11320-11336 [CrossRef]
  23. Salestan SK, Rahimpour A, Abedini R (2021) Experimental and theoretical studies of biopolymers on the efficient CO2/CH4 separation of thin-film Pebax®1657 membrane. Chem Eng Process 163: 108366 [CrossRef]
  24. Mozafari M, Abedini R, Rahimpour A (2018). Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4. J Mater Chem A 6: 12380-12392 [CrossRef]
  25. Meshkat S, Kaliaguine S, Rodrigue D (2018) Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation. Sep Purif Technol 200: 177-190 [CrossRef]
  26. Khoshhal Salestan S, Pirzadeh K, Rahimpour A, Abedini R (2021) Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4. J Environ Chem Eng 9: 105820 [CrossRef]
  27. Pacheco MJ, Vences LJ, Moreno H, Pacheco JO, Valdivia R, Hernández C (2021) Review: Mixed-matrix membranes with CNT for CO2 separation processes. Membranes 11: 457 [CrossRef]
  28. Pazani F, Aroujalian A (2021) High-performance gas separation using mixed-matrix composite membranes containing graphene nanoplatelets. Polym Bull 78: 6847-6866 [CrossRef]
  29. Nasir R, Mukhtar H, Man Z, Mohshim DF (2013) Material advancements in fabrication of mixed‐matrix membranes. Chem Eng Technol 36: 717-727 [CrossRef]
  30. Lin Z, Yuan Z, Dai Z, Shao L, Eisen MS, He X (2023) A review from material functionalization to process feasibility on advanced mixed matrix membranes for gas separations. Chem Eng J 475: 146075 [CrossRef]
  31. Qin Z, Ma Y, Wei J, Guo H, Wang B, Deng J, Yi C, Li N, Yi S, Deng Y, Du W, Shen J, Jiang W, Yao L, Yang L, Dai Z (2024) Recent progress in ternary mixed matrix membranes for CO2 separation. Green Energy Environ 9: 831-858 [CrossRef]
  32. Davoodi S, Sadeghi M, Naghsh M, Moheb A (2016) Olefin–paraffin separation performance of polyimide Matrimid®/silica nanocomposite membranes. RSC Adv 6: 23746-23759 [CrossRef]
  33. Sun HX, Yuan BB, Li P, Wang T, Xu YY (2015) Preparation of nanoporous graphene and the application of its nanocomposite membrane in propylene/propane separation. Func Mater Lett 8: 1550019 [CrossRef]
  34. Kim SK, Hong SR (2014) Gas permeation characteristics of propylene/propane in PEBAX-ZIF composite membranes. Membrane J 24: 259-267 [CrossRef]
  35. Najafi M, Sadeghi M, Shamsabadi Aa, Dinari M, Soroush M (2020) Polysulfone membranes incorporated with reduced graphene oxide nanoparticles for enhanced olefin/paraffin separation. Chemistry Select 5: 3675-3681 [CrossRef]
  36. Shahrezaei K, Abedini R, Lashkarbolooki M, Rahimpour A (2019) A preferential CO2 separation using binary phases membrane consisting of Pebax®1657 and [Omim][PF6] ionic liquid. Korean J Chem Eng 36: 2085-2094 [CrossRef]
  37. Kim M, Kang SW (2019) PEBAX-1657/Ag nanoparticles/7,7,8,8-tetracyanoquinodimethane complex for highly permeable composite membranes with long-term stability. Sci Rep 9: 4266 [CrossRef]
  38. Shao L, Chang X, Zhang Y, Huang Y, Yao Y, Guo Z (2013) Graphene oxide cross-linked chitosan nanocomposite membrane. Appl Surf Sci 280: 989-992 [CrossRef]
  39. Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Procedia Eng 32: 759-764 [CrossRef]
  40. Meshkat S, Kaliaguine S, Rodrigue D (2019) Enhancing CO2 separation performance of Pebax® MH-1657 with aromatic carboxylic acids. Sep Purif Technol 212: 901-912 [CrossRef]
  41. Khosravi T, Omidkhah M, Kaliaguine S, Rodrigue D (2017) Amine‐functionalized CuBTC/poly(ether‐b‐amide‐6) (Pebax® MH 1657) mixed matrix membranes for CO2/CH4 separation. Can J Chem Eng 95: 2024-2033 [CrossRef]
  42. Farivar F, Lay Yap P, Karunagaran RU, Losic D (2021) Thermogravimetric analysis (TGA) of graphene materials: Effect of particle size of graphene, graphene oxide and graphite on thermal parameters. C 7: 41 [CrossRef]
  43. Losic D, Farivar F, Yap PL, Karami A (2021) Accounting carbonaceous counterfeits in graphene materials using the thermogravimetric analysis (TGA) approach. Anal Chem 93: 11859-11867 [CrossRef]
  44. Nobakht D, Abedini R (2022) Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds. J Environ Chem Eng 10: 107568 [CrossRef]
  45. Ranjbar F, Ghorbani M, Abedini R, Ghasemi M (2022) Thin film nanocomposite (TFN) membrane comprising Pebax® 1657 and porous organic polymers (POP) for favored CO2 separation. J Membrane Sci Res 8: 535579 [CrossRef]
  46. Chng ML, Xiao Y, Chung T, Toriida M, Tamai S (2009) Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether ketone)/2,6-bis(4-azidobenzylidene)-4-methyl-cyclohexanone interpenetrating network. Carbon 47: 1857-1866 [CrossRef]
  • Receive Date: 29 October 2024
  • Revise Date: 18 December 2024
  • Accept Date: 08 January 2025
  • First Publish Date: 11 January 2025