Describing the solidification process is very important in polymer processing. In polypropylene (PP), the increase of viscosity, named stiffening or hardening, is determined by a rise in crystallinity. When PP flows in a channel or is stretched on a chill roll, the stress induces an anticipated crystallization and thus can lead to an unexpected solidification. This study explores how flow fields influence the crystallization behavior of PP. A controlled-stress rheometer was used to investigate the effect of short shear stress steps on crystallization kinetics. The results revealed that applying a stress step significantly increased the rate of crystallization compared to a non-stressed sample. This acceleration is attributed to the stress-induced orientation of macromolecules, which promotes nucleation. Furthermore, longer durations of applied stress led to a faster increase in viscosity, indicating a higher nucleation density with increasing stress exposure. A mastercurve approach validated the consistency of the model describing the stress-crystallization relationship. The calculated parameter relating to nucleation density confirmed a linear increase with stress duration, allowing estimation of the nucleation rate during shear.
Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J 49: 1057-1065 [CrossRef]
Mileva D, Tranchida D, Gahleitner M (2018) Designing polymer crystallinity: An industrial perspective. Polym Cryst 1: 1–16 [CrossRef]
Maddah HA (2016) Polypropylene as a promising plastic: A review. Am J Polym Sci 6: 1–11 [CrossRef]
Pantani R, Speranza V, Coccorullo I, G Titomanlio (2002) Morphology of injection moulded iPP samples. Macromol Symp 185: 309–326 [CrossRef]
Gloger D, Rossegger E, Gahleitner M, Wagner C (2020) Plastic drawing response in the biaxially oriented polypropylene (BOPP) process: polymer structure and film casting effects. Journal of Polymer Engineering 40: 743-752 [CrossRef]
Pantani R, Speranza V, Titomanlio G (2001) Relevance of mold-induced thermal boundary conditions and cavity deformation in the simulation of injection molding. Polym Eng Sci 41: 2022-2035 [CrossRef]
Houichi H, Maazouz A, Elleuch B (2015) Crystallization behavior and spherulitic morphology of poly(lactic acid) films induced by casting process. Polym Eng Sci 55: 1881–1888 [CrossRef]
Pantani R, Titomanlio G (2001) Description of PVT behavior of an industrial polypropylene–EPR copolymer in process conditions. J Appl Polym Sci 81: 267–278 [CrossRef]
Hieber CA (2002) Modeling/simulating the injection molding of isotactic polypropylene. Polym Eng Sci 42:1387–1409 [CrossRef]
Iozzino V, De Santis F, Volpe V, Pantani R (2018) PLA-Based Nanobiocomposites with Modulated Biodegradation Rate. In: Advances in Bionanomaterials, pp 51-60 [CrossRef]
De Santis F, Volpe V, Pantani R (2017) Effect of molding conditions on crystallization kinetics and mechanical properties of poly (lactic acid). Polym Eng Sci 57: 306–311 [CrossRef]
Caelers HJ, Govaert LE, Peters GW (2016) The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions. Polymer 83: 116-128 [CrossRef]
Speranza V, Sorrentino A, De Santis F, Pantani R (2014) Characterization of the polycaprolactone melt crystallization: Complementary optical microscopy, DSC, and AFM studies. Sci World J 2014: 720157 [CrossRef]
Billon N, Castellani R, Bouvard JL, Rival G (2023) Viscoelastic properties of polypropylene during crystallization and melting: Experimental and phenomenological modeling. Polymers (Basel) 15: 3846 [CrossRef]
Pantani R, Speranza V, Titomanlio G (2014) Evolution of iPP relaxation spectrum during crystallization. Macromol Theory Simul 23: 300–306 [CrossRef]
Roy D, Audus DJ, Migler KB (2019) Rheology of crystallizing polymers: The role of spherulitic superstructures, gap height, and nucleation densities. J Rheol 63: 851-862 [CrossRef]
Pantani R, Speranza V, Titomanlio G (2015) Simultaneous morphological and rheological measurements on polypropylene: Effect of crystallinity on viscoelastic parameters. J Rheol 59: 377-390 [CrossRef]
Speranza V, Liparoti S, Pantani R, Titomanlio G (2019) Hierarchical structure of iPP during injection molding process with fast mold temperature evolution. Materials 12: 12030424 [CrossRef]
Volpe V, De Filitto M, Klofacova V, De Santis F, Pantani R (2018) Effect of mold opening on the properties of PLA samples obtained by foam injection molding. Polym Eng Sci 58: 475–484 [CrossRef]
Viana JC, Cunha AM, Billon N (2002) The thermomechanical environment and the microstructure of an injection moulded polypropylene copolymer, Polymer (Guildf) 43: 4185–4196 [CrossRef]
Vietri U, Sorrentino A, Speranza V, Pantani R (2011) Improving the predictions of injection molding simulation software, Polym Eng Sci 51: 2542–2551 [CrossRef]
Pantani R, Speranza V, Titomanlio G (2001) Relevance of crystallisation kinetics in the simulation of the injection molding process, Int Polym Proces 16: 61–71 [CrossRef]
Derakhshandeh M, Mozaffari G, Doufas AK, Hatzikiriakos SG (2014) Quiescent crystallization of polypropylene: Experiments and modeling, J Polym Sci Pol Phys 52: 1259–1275 [CrossRef]
Xu J, Srinivas S, Marand H, Agarwal P (1998) Equilibrium Melting Temperature and Undercooling Dependence of the Spherulitic Growth Rate of Isotactic Polypropylene. Macromolecules 31: 8230-8242 [CrossRef]
Hieber CA (1995) Correlations for the quiescent crystallization kinetics of isotactic polypropylene and poly(ethylene terephthalate). Polymer (Guildf) 36: 1455-1467 [CrossRef]
Sorrentino A, Pantani R (2009) Pressure-dependent viscosity and free volume of atactic and syndiotactic polystyrene. Rheol Acta 48: 467-478 [CrossRef]
Zhong G-J, Yang S-G, Lei J, Li Z-M (2024) Flow-induced polymer crystallization under pressure and its engineering application in “structuring”. Macromolecules 57: 789-809 [CrossRef]
R. Pantani, A. Sorrentino (2005) Pressure effect on viscosity for atactic and syndiotactic polystyrene, Polym Bull 54: 365-376 [CrossRef]
Hamad FG, Colby RH, Milner ST (2015) Onset of flow-induced crystallization kinetics of highly isotactic polypropylene. Macromolecules 48: 3725-3738 [CrossRef]
Nie C, Peng F, Cao R, Cui K, Sheng J, Chen W, Li L (2022) Recent progress in flow‐induced polymer crystallization. J Polym Sci 60: 3149-3175 [CrossRef]
Speranza V, De Santis F, Pantani R (2024) Effect of isothermal shear flow on morphology evolution of an isotactic polypropylene, Polymer (Guildf) 295: 126752 [CrossRef]
De Santis F, Pantani R, Titomanlio G (2016) Effect of shear flow on spherulitic growth and nucleation rates of polypropylene. Polymer (Guildf) 90: 102-110 [CrossRef]
Boutaous M, Bourgin P, Zinet M (2010) Thermally and flow induced crystallization of polymers at low shear rate. J Nonnewton Fluid Mech 165 (2010) 227-237 [CrossRef]
Roozemond PC, van Drongelen M, Verbelen L, Puyvelde VP, Peters GWM (2014) Flow-induced crystallization studied in the RheoDSC device: Quantifying the importance of edge effects. Rheol Acta 54: 1-8 [CrossRef]
Custódio FJMF, Steenbakkers RJA, Anderson PD, Peters GWM, Meijer HEH (2009) Model development and validation of crystallization behavior in injection molding prototype flows. Macromol Theory Simul 18 (2009) 469-494 [CrossRef]
Zhou YG, Shen CY, Liu CT, Li Q, Turng LS (2010) Computational modeling and numerical simulation of flow-induced crystallization kinetics during injection molding of polyethylene terephthalate. J Reinf Plast Compos 29: 76-85 [CrossRef]
Tanner RI, Qi F (2005) A comparison of some models for describing polymer crystallization at low deformation rates, J Nonnewton Fluid Mech 127: 131–141 [CrossRef]
Volpe V, Foglia F, Pantani R (2021) Flow-induced crystallization of a Poly(Lactic acid): Effect of the application of low shear rates on the polymorphous crystallization. Polymer (Guildf) 229: 123997 [CrossRef]
Ma Z, Steenbakkers RJA, Giboz J, Peters GWM (2011) Using rheometry to determine nucleation density in a colored system containing a nucleating agent, Rheol Acta 50: 909-915 [CrossRef]
Koscher E, Fulchiron R (2002) Influence of shear on polypropylene crystallization: morphology development and kinetics, Polymer (Guildf) 43: 6931-6942 [CrossRef]
Boutaous M, Bourgin P, Zinet M (2010) Thermally and flow induced crystallization of polymers at low shear rate, J Nonnewton Fluid Mech 165: 227-237 [CrossRef]
Hamdi, A. (2024). Experiments and analysis of stress-induced stiffening of a polypropylene. Polyolefins Journal, 11(3), 149-154. doi: 10.22063/poj.2024.3622.1308
MLA
Ahmed Hamdi. "Experiments and analysis of stress-induced stiffening of a polypropylene". Polyolefins Journal, 11, 3, 2024, 149-154. doi: 10.22063/poj.2024.3622.1308
HARVARD
Hamdi, A. (2024). 'Experiments and analysis of stress-induced stiffening of a polypropylene', Polyolefins Journal, 11(3), pp. 149-154. doi: 10.22063/poj.2024.3622.1308
VANCOUVER
Hamdi, A. Experiments and analysis of stress-induced stiffening of a polypropylene. Polyolefins Journal, 2024; 11(3): 149-154. doi: 10.22063/poj.2024.3622.1308