Chemical state analysis of magnesium-supported Ziegler-Natta catalyst by soft X-ray emission spectrometer (SXES) after contact with alkyl aluminum

Document Type : Original research

Authors

1 Analysis Center, Toho Titanium Co., LTD., 3-3-5, Chigasaki, Chigasaki-City, Kanagawa, 253-8510, Japan

2 Former Toho Titanium Co., LTD, Japan

3 JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan

Abstract

This report is on the characterization of active Ti center in heterogeneous Ziegler-Natta catalysts with Soft X-ray Emission Spectrometer (SXES). Since titanium in the catalyst has various chemical bonds, it is important to grasp the chemical bond state. The outermost shell electrons are very important for understanding the chemical bond state. SXES is the only method that can easily observe outermost shell electrons with current analytical instruments. Here, a co-milled solid of MgCl2, TiCl4, and Phthalate was used as a catalyst precursor, and three types of catalysts with significantly different catalytic activity levels were synthesized by changing the subsequent preparation process. The correlation between catalytic activity and the signal shape of Lα,β emission, which is the outermost shell electron of Ti in SXES analysis, was investigated. Lα,β emission was detected as broad signal. It could be observed that the high active catalyst had relatively strong signal intensity at the high energy side.
   The shape changes were also checked when the catalyst solids were treated by triethylaluminium. By this treatment, the relative intensity of the high energy side signal was further enhanced, suggesting that triethylaluminium treatment induced the elimination of inactive Ti from the catalyst solid. By comparing with the solid 13C-NMR analyses data of the Ziegler-Natta catalyst described in our previous report, the high energy side signal of Ti Lα,β in SXES results implies the relationship with the NMR results for carbonyl function.

Graphical Abstract

Chemical state analysis of magnesium-supported Ziegler-Natta catalyst by soft X-ray emission spectrometer (SXES) after contact with alkyl aluminum

Keywords

Main Subjects


  1. Ziegler K, Holzkamph E, Breil H, Martin H (1955) Das mülheimer normaldruck-polyäthylen-verfahren. Angew Chem 67: 541-547 [CrossRef]
  2. Natta G (1955) Une nouvelle classe de polymeres d′ α-olefines ayant une régularité de structure exceptionnelle. J Polym Sci 16:143-154 [CrossRef]
  3. Natta G (1956) Stereospezifische katalysen und isotaktische polymere. Angew chem 68: 393-403 [CrossRef]
  4. Kashiwa N (1980) Super active catalyst for olefin polymerization. Polym J 12:603-608 [CrossRef]
  5. Toyota A, Kashiwa N(1981) Method for producing high-performance supported catalyst component, Jap Patent:1,014,471
  6. Ohashi R, Saito M, Fujita F, Nakai T, Utsumi H, Deguchi K, Tansho M, Shimizu T (2012) Observation of 47,49Ti NMR Spectra of TiCl4/MgCl2 catalysts under an ultrahigh magnetic field. Chem Lett 41:1563-1565 [CrossRef]
  7. Brevard G (1981) Handbook of high resolution multinuclear NMR, John Wiley & Sons, Fi 23, pp.56
  8. Laszlo P (1983) NMR of newly accessible nuclei, Academic Press, New York, pp.1, 18
  9. Drakenberg T, Forsen S (1983) The alkalin earth metals biological applications. In: The multinuclear approach to NMR spectroscopy, eds: J. B. Lambert, F. G. Riddell, pp.309
  10. Keii T, Suzuki E, Tamura M, Murata M, Doi Y (1982) Propene polymerization with a magnesium chloride-supported Ziegler catalyst,1. principal kinetics. Makromol Chem 183: 2285-2304 [CrossRef]
  11. Doi Y, Soga K, Murata M, Suzuki E, Ono Y, Keii T (1983) Additive effect of metal chlorides on propylene polymerization with a soluble titanium-based Ziegler catalyst. Polym Commun 24: 244-246 [CrossRef]
  12. Terano M, Kataoka T, Keii T (1986) Analysis of MgCl2-supported high-yield catalysts by thermal analysis and infrared spectroscopy. Macromol Chem Rapid Commun 7: 725-731 [CrossRef]
  13. Kakugo M, Miyatake T, Naito Y, Mizunuma K (1988) Microtacticity distribution of polypropylenes prepared with heterogeneous Ziegler-Natta catalysts. Macromolecules 21: 314-319 [CrossRef]
  14. Terano T, Kataoka T, Keii T (1987) A study on the states of ethyl benzoate and TiCl4 in MgCl2-supported high-yield catalysts. Makromol Chem 188: 1477-1487 [CrossRef]
  15. Abis L, Albizzati E, Giannini U, Giunchi G, Santoro E, Noristi L (1988) Cross polarization/magic angle spinning 13C solid state nuclear magnetic resonance of model compounds related to supported Ziegler-Natta catalysts. Makromol Chem 189: 1595-1601 [CrossRef]
  16. Sormunen P, Hjertberg T, Iiskora E (1990) A solid-state 13C NMR study on heterogeneous Ziegler-Natta catalyst components. Makromol Chem 191: 2663-2673 [CrossRef]
  17. Terano M, Saito M, Kataoka T (1992) Solid-state 13C NMR study on the state of the electron donor in MgCl2-supported catalysts. Makromol Chem Rapid Commun 13: 103-108 [CrossRef]
  18. Härkönen M, Seppälä JV, Chûjô R, Kogure Y (1995) External silane donors in Ziegler-Natta catalysis: A two-site model simulation of the effects of various alkoxysilane compounds. Polymer 36:1499-1505 [CrossRef]
  19. Bahri-Laleh N, Nekoomanesh-Haghighi M, Mirmohammadi SA (2012) A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler–Natta catalyst. J Organomet Chem 719: 74-79 [CrossRef]
  20. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M , Talarico G, Cavallo L (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84: 89-114 [CrossRef]
  21. Zohuri GH, Askari M, Ahmadjo S, Damavandi S, Eftekhar M, Bonakdar MA (2010) Preparation of ultra-high-molecular-weight polyethylene and its morphological study with a heterogeneous Ziegler–Natta catalyst. J Appl Polym Sci 118: 3333-3339 [CrossRef]
  22. Jamjah R, ZohuriG H, JVaezi J, Ahmadjo S, Nekomanesh M, Pouryari M (2006) Morphological study of spherical MgCl2.nEtOH supported TiCl4 Ziegler-Natta catalyst for polymerization of ethylene. J Appl Polym Sci 101: 3829-3834 [CrossRef]
  23. Zohuri G H, Jamjah R, Ahmadjo S (2006) Comparative study of propylene polymerization using monosupported and bisupported titanium-based Ziegler–Natta catalysts. J Appl Polym Sci 100: 2220-2226 [CrossRef]
  24. Saito M, Uozumi T, Sugano T, Kataoka T, Chujo R (2018) Correlation between catalyst performance and relaxation time of electron donor in olefin polymerization catalyst by solid 13C NMR. Kobunshi Ronbunshu 75: 570-575 [CrossRef]
  25. Groppo E, Gallo E, Seenivasan K, Lomachenko K, Sommazzi A, Bordiga S, Glatzel P, Silfhout RV, Kachatkou A, Bras W, Lamberti C (2015) XAS and XES techniques shed light on the dark side of Ziegler-Natta catalysts: Active-site generation. Chem Cat Chem 7: 1432-1437 [CrossRef]
  26. Taniike T, Terano M (2018) High-precision molecular modelling for Ziegler-Natta catalysts. J Japan Petrol Ins 61: 182-190 [CrossRef]
  27. Iijima T, Shimizu T, Goto A, Deguchi K, Nakai T, Ohashi R, Saito M (2019) 47,49Ti Solid-state NMR and DFT study of Ziegler-Natta catalyst: Adsorption of TiCl4 molecule onto the surface of MgCl2. J Phys Chem solids 135:109088 [CrossRef]
  28. Piovano P, Signorile M, Signorile M, Torelli P, Martini A, Martini A, Takasao G,Taniike T, Groppo E (2021)Electronic properties of Ti sites in Ziegler–Natta catalysts. ACS Catal 11: 9949-9961 [CrossRef]
  29. Saito M, Uozumi T, Murata M, Kataoka T, Chujo R (2022) Characterization of phthalate internal donor in MgCl2 supported Ziegler-Natta catalyst by solid state 13C NMR. Polyolefins J 9: 117-127 [CrossRef]
  30. Chikuma H, Takasao G, Wada T, Chammingkwan P, Behler J, Taniike T (2023) Accelerating non-empirical structure determination of Ziegler–Natta catalysts with a high-dimensional neural network potential. J Phys Chem C 127: 11683-11691 [CrossRef]
  31. Zarupski J, Piovano A, Signorile M, Amodio A, Olivi L, Hendriksen C, Friederichs N H, Groppo E (2023) Silica-magnesium-titanium Ziegler-Natta catalysts. Part1: Structure of the pre-catalyst at a molecular level. J Catal 424: 236-245 [CrossRef]
  32. Terauchi M, Yamamoto H and Tanaka, M (2001) Development of a sub-eV resolution soft-X-ray spectrometer for a transmission electron microscope. J Electron Microsc 50: 101-104 [CrossRef]
  33. Terauchi M, Takahashi H, Handa N, Murano T, Koike M, Kawachi T, Imazono T, Koeda M, Nagano T, Sasai H, Oue Y, Yonezawa Z, Kuramoto S (2012) Ultrasoft-X-ray emission spectroscopy using a newly designed wavelength-dispersive spectrometer attached to a transmission electron microscope. J Electron Microsc 61: 1-8 [CrossRef]
  34. Takakura M, Murano T, Takahashi H (2015) Newly Developed Soft X-ray Emission Spectrometer, SS94000SXES, JEOL News 50: 64-68 [CrossRef]
  35. Terauchi M, Koshiya S, Kimoto K (2017) Information observed in Ti-Lα,β and Ti-Ll,η emission lines of Ti and its oxides. IOP Conf Series: Mater Sci Eng 304: 012018-1-6 [CrossRef]
  36. Terauchi T, Sato Y (2018) Chemical state analyses by soft X-ray emission spectroscopy. JEOL NEWS 53: 30-35 [CrossRef]
  37. Takahashi H, MuranoT, Takakura M, Asahina S, Terauchi M, Koike M, Imazono T, Koeda M, Nagano T (2018) Development of soft X-ray emission spectrometer for EPMA/SEM and its application. IOP Conf Ser Mater Sci Eng [CrossRef]
  38. Sakuda Y, Ishizaki M, Togashi T, Asahina S, Takakura M, Takahashi H, Kurihara M (2016) Chemical state analysis using Soft X-ray Emission Spectrometry in low voltage FE-SEM. European Microscopy Congress 2016: Proceedings [CrossRef]
  39. Bearden JA (1967) X-Ray Wavelengths. Rev Mod Phys 39: 78 [CrossRef]
  • Receive Date: 05 January 2024
  • Revise Date: 20 March 2024
  • Accept Date: 01 April 2024
  • First Publish Date: 02 April 2024