Synthesizing polypropylene with percolation network catalyzed by inorganic nanoparticles-functionalized Ziegler-Natta catalyst

Document Type : Original research


1 Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

2 Shanxi Coking Coal Group Co., LTD, Taiyuan, Shanxi 030024, China

3 Jinneng Holding Group, Datong, Shanxi037000, China

4 CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China


Polypropylene is one of the most widely used synthetic resins, which is mainly synthesized with Ziegler-Natta catalysts. In this paper, the functionalized Ziegler-Natta catalyst is applied to prepare high-performance polypropylene. A new way to synthesize functionalized Ziegler-Natta catalysts is to dope with inorganic nanoparticles. The MgCl2/TiCl4/BMMF catalysts doped with halloysite nanotubes were prepared and applied to synthesize polypropylene containing less than 200ppm halloysite nanotubes. It is found that doping nanotubes in Ziegler-Natta catalyst has little impact on the structure, composition and activity of the catalyst, and polypropylene with high isotactic degree and molecular weight was synthesized with the functionalized Ziegler-Natta catalyst. Halloysite nanotubes are found to be dispersed in polypropylene in the form of individual nanotube, forming percolated network in the polymer melt effectively. Moreover, the polypropylene containing halloysite nanotubes exhibited better mechanical and thermal resistance properties as compared with conventional polypropylene, and the thermo-oxidative properties of which do not deteriorate as the introduction of nanotubes. This research provides a facile way to relieve the contradiction between the high activity of catalyst and high content of nanoparticles during the preparation of polyolefin nanocomposites by in-situ polymerization, and a new idea to prepare polyolefin nanocomposites by in-situ polymerization.


Main Subjects

  1. Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48: 7374-7384 [CrossRef]
  2. Seo MK, Lee JR, Park SJ (2005) Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes. Mater Sci Eng A 404: 79-84 [CrossRef]
  3. Lin Z, Peng M, Zheng Q (2004) Isothermal crystallization behavior of polypropylene catalloys. J Appl Polym Sci 93: 877-882 [CrossRef]
  4. Taniike T, Toyonaga M, Terano M (2014) Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer 55: 1012-1019 [CrossRef]
  5. Zhu GM, Qian DF (2001) Research progress in polymer-based nanocomposites. New Chemical Materials 29: 16-21
  6. Maira B, Chammingkwan P, Terano M, Taniike T (2015) New reactor granule technology for highly filled nanocomposites: effective flame retardation of polypropylene/magnesium hydroxide nanocomposites. Macromol Mater Eng 300: 679-683 [CrossRef]
  7. Maira B, Chammingkwan P, Terano M, Taniike T (2017) Reactor granule technology for fabrication of functionally advantageous polypropylene nanocomposites with oxide nanoparticles. Compos Sci Tech 144: 151-159 [CrossRef]
  8. Yang KF, Huang Y, Dong JY (2007) Efficient preparation of isotactic polypropylene/ montmorillonite nanocomposites by in situ polymerization technique via a combined use of functional surfactant and metallocene catalysis. Polymer 48: 6254-6261 [Cross Ref]
  9. Huang YJ, Qin YW, Wang N, Zhou Y, Niu H, Dong JY, Hu JP, Wang YX (2012) Reduction of graphite oxide with a grignard reagent for facile in situ preparation of electrically conductive polyolefin/graphene nanocomposites. Macromol Chem Phys 213: 720-728 [CrossRef]
  10. Huang Y, Yang KF, Dong JY (2007) An in situ matrix functionalization approach to structure stability enhancement in polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization. Polymer 48: 4005-4014 [CrossRef]
  11. Kaminsky W, Funck A, Wiemann K (2006) Nanocomposites by in situ polymerization of olefins with metallocene catalysts. Macromol Symp 239: 1-6 [Cross Ref]
  12. Wang N, Qin Y, Huang Y, Niu H, Dong JY, Wang Y (2012) Functionalized multi-walled carbon nanotubes with stereospecific Ziegler-Natta catalyst species: Towards facile in situ preparation of polypropylene nanocomposites. Appl Catal A-Gen 435-436: 107-114 [CrossRef]
  13. Huang Y, Qin Y, Zhou Y, Niu H, Yu ZZ, Dong JY (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler-Natta polymerization. Chem Mater 22: 4096-4102 [CrossRef]
  14. Qin Y, Wang N, Zhou Y, Huang Y, Niu H, Dong JY (2011) Fabrication of nanofillers into a granular "nanosupport" for Ziegler-Natta catalysts: towards scalable in situ preparation of polyolefin nanocomposites. Macromol Rapid Commun 32: 1052-1059 [CrossRef]
  15. Du ML, Guo BC, Jia DM (2010) Newly emerging applications of halloysite nanotubes: A review. Polym Int 59: 574-582 [CrossRef]
  16. Lvov Y, Abdullayev E (2013) Functional polymer-clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38: 1690-1719 [CrossRef]
  17. Hendricks SB (1938) Crystal structures of the clay mineral hydrates. Nature 142: 38 [CrossRef]
  18. Joussein E, Petit S, Churchman J, Theng B, Righi D, Deivaux B (2005) Halloysite clay minerals - A review. Clay Minerals 40: 383-426 [CrossRef]
  19. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39: 1498-1525 [CrossRef]
  20. Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48: 4260-4273 [CrossRef]
  21. Handge UA, Hedicke-Höchstötter K, Altstädt V (2010) Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties. Polymer 51: 2690-2699 [CrossRef]
  22. Gualtieri AF (2001) Synthesis of sodium zeolites from a natural halloysite. Phys Chem Miner 28: 719-728 [CrossRef]
  23. Klimkiewicz R, Drag EB (2004) Catalytic activity of carbonaceous deposits in zeolite from halloysite in alcohol conversions. J Phys Chem Solids 65: 459-464 [CrossRef]
  24. Rong TJ, Xiao JK (2002) The catalytic cracking activity of the kaolin-group minerals. Mater Lett 57: 297-301 [CrossRef]
  25. Yuan P, Tan D, Annabi-Bergaya F, Yan W, Fan M, Liu D, He H (2012) Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clay Clay Min 60: 561-573 [CrossRef]
  26. Ali M A, Betlem B, Roffel B, Weickert G (2006) Hydrogen response in liquid propylene polymerization: towards a generalized model. AIChE 52: 1866-1876 [CrossRef]
  27. Abedi S, Daftari-Besheli M, Shafiei S (2005) Highly active Ziegler-Natta catalyst for propylene polymerization. J Appl Polym Sci 97: 1744-1749 [CrossRef]
  28. Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Garray D, Shaffer MSP (2009) Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer 50: 5803-5811 [CrossRef]
  29. Ma Z, Wang J, Gao X, Ding T, Qin Y (2012) Application of halloysite nanotubes. Prog Chem 24: 275-283 [CrossRef]
  30. Wu D, Wu L, Zhang M, Zhao Y (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stabil 93: 1577-1584 [CrossRef]
  31. Du ML (2007) Study on the structure and properties of polypropylene/halloysite nanotube composites. PhD Thesis, South China University of Technology
  32. Kim JR, Kim YA, Yoon JH, Park DW, Woo HC (2002) Catalytic degradation of polypropylene effect of dealumination of clinoptilolite catalyst. Polym Degrad Stabil 75: 287-294 [CrossRef]
  33. Park DW, Hwang EY, Kim JR, Choi JK, Kim YA, Woo HC (1999) Catalytic degradation of polyethylene over solid acid catalysts. Polym Degrad Stabil 65: 193-198 [CrossRef]
  34. Garcia M, Van Vliet G, Jain SH, Schrauwen BAG, Sarkissov AU, Van Zyl WE, Boukamp BA (2004) Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci 6: 169-175 [CrossRef]
  35. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42: 167-183 [CrossRef]
  36. Taniike T, Toyonaga M, Terano M (2014) Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer 55: 1012-1019 [CrossRef]