Effect of compatibilizer and nanosilica on the mechanical, thermal, and degradation kinetic properties of polypropylene/polylactic acid blends

Document Type : Original research

Authors

Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Coimbatore-641112, Amrita Vishwa Vidyapeetham, India

Abstract

In this study, polypropylene (PP) was blended with polylactic acid (PLA) to enhance PP's mechanical properties, such as tensile strength and modulus, and to encourage the adoption of eco-friendly, renewable resource based material in polymer production. Even though PLA's biodegradability cannot be fully utilized in PP/PLA blends, but PLA can still improve PP's mechanical properties and provide an alternative resource for biobased raw materials. To meet the requirement, PP and PLA were blended in a 70:30 ratios with a compatibilizer and nanosilica at different loading levels by melt-blending. Blends of PP and PLA materials were processed without any problems, since both materials have melting points in the range of 170°C. Despite this, the properties of polymer blends are limited by the immiscibility between these neat polymers. To solve this problem, compatibilizers like polypropylene-grafted-maleic anhydride (PP-g-MA) were added to blends to improve their compatibility. Nanosilica was also added to this compatibilizer to study the system's compatibility and modify the hydrophobicity of PLA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), tensile strength, and field emission scanning electron microscopy (FESEM) were used to analyze the polymer blend. Results indicate that compatibilizers play a significant role in improving tensile properties, thermal stability, and blend dispersion in the system, mainly in 5 parts compatibilizer-based systems. Composition with 5 parts compatibilizer increases tensile strength of 70/30 blend from 19.7 to 27 MPa, while elongation increases from 2.2 to 3.6 %. Additionally, a composition with 0.7 parts of nanosilica increases the modulus from 1488 to 1732 MPa when compared to the 70/30 blend.

Keywords

Main Subjects


  1. Rajan KP, Aravinthan G, Emad AMA, Selvin PT (2021) Halloysite nanotubes (HNT) as reinforcement for compatibilized blends of polypropylene (PP) and polylactic acid (PLA). J Polym Res 28: 374 [CrossRef]
  2. Hamad K, Kaseem M, Deri F (2011) Rheological and mechanical characterization of poly(lactic acid)/polypropylene polymer blends. J Polym Res 18: 1799-1806 [CrossRef]
  3. Aghjeh MR, Asadi V, Mehdijabbar P, Khonakdar HA, Jafari SH (2016) Application of linear rheology in determination of nanoclay localization in PLA/ EVA/Clay nanocomposites: Correlation with microstructure and thermal properties. Compos B Eng 86: 273-284 [CrossRef]
  4. Shah TV, Vasava DV (2019) A glimpse of biodegradable polymers and their biomedical applications. E-Polym 19: 385–410 [CrossRef]
  5. Arrietaa MP, Fortunati E, Dominici F, López J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydr Polym 121: 265-275 [CrossRef]
  6. Deghiche A, Haddaoui N, Zerriouh A, Fenni SE, Cavallo D, Erto A, Benguerba Y (2021) Effect of the stearic acid-modified TiO2 on PLA nanocomposites: Morphological and thermal properties at the microscopic scale. J Environ Chem Eng 9: 106541 [CrossRef]
  7. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S (2020) Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv 10: 13316– 13368 [CrossRef]
  8. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid) –mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107: 333- 366 [CrossRef]
  9. Jim JK and Bowen T (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Indd Eng Polym Res 3: 60-70 [CrossRef]
  10. Sui G, Jing M, Zhao J, Wang K, Zhang Q, Fu Q (2018) A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/ polylactide (PP/PLA) blends. Polymer 154: 119–127 [CrossRef]
  11. Xu Y, Loi J, Delgado P, Topolkaraev V, McEneany RJ, Macosko CW, Hillmyer MA (2015) Reactive compatibilization of polylactide/polypropylene blends. Ind Eng Chem Res 54: 6108-6114 [CrossRef]
  12. Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L (2011) Poly(L-lactide)/Polypropylene Blends: Evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci 121: 3223-3237 [CrossRef]
  13. Rajan KP, Thomas SP, Gopanna A, Al-Ghamdi A, Chavali M (2018) Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends. Mater Res Express 5: 085304 [CrossRef]
  14. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN (2010) Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromol Res 18: 583- 588 [CrossRef]
  15. Ebadi‐Dehaghani H, Khonakdar HA, Barikani M, Jafari SH, Wagenknecht U, Heinrich G (2016) An investigation on compatibilization threshold in the interface of polypropylene/polylactic acid blends using rheological studies. Vinyl Addit Technol 22: 19- 28 [CrossRef]
  16. Li X, Yang Q, Zhang K, Pan L, Feng Y, Jia Y, Xu N (2022) Property improvement and compatibilization mechanism of biodegradable polylactic acid/maleic anhydride-based/polypropylene spunbonded nonwoven slices. J Clean Prod 375: 134097 [CrossRef]
  17. Bhasney SM, Kumar A, Katiyar V (2020) Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Compos B Eng 184: 107717 [CrossRef]
  18. Bai Z, Dou Q (2018) Rheology, morphology, crystallization behaviors, mechanical and thermal properties of poly(lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends. J Polym Environ (2018) 26: 959-969 [CrossRef]
  19. Mandal DK, Bhunia H, Bajpai PK, Chaudhari CV, Dubey KA, Varshney L, Kumar A (2021) Preparation and characterization of polypropylene/ polylactide blends and nanocomposites and their biodegradation study. J Thermoplast Compos Mater 34 (2021) 725-744 [CrossRef]
  20. Dastakeer S, Saminathan P, Venkatesan S, Sudha PG, Kannan M (2019) Studies on thermal degradation kinetics and dielectric properties of polyether imide foam/nanosilica-based nanocomposites. Plast Rubber compos 48: 356-363 [CrossRef]
  21. Anbupalani MS, Venkatachalam CD, Rathanasamy R (2020) Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers – A review. J Reinf Plast Compos 39: 520-524 [CrossRef]
  22. Zhang T, Chen X, Guo Z, Xiu H, Bai H, Zhang Q, Fu Q (2021) Controlling the selective distribution of hydrophilic silica nanoparticles in polylactide/ethylene-co-vinyl-acetate blends via tailoring the OH surface concentration of silica. Compos Commun 25: 100737 [CrossRef]
  23. Luiz CCJ, Janaíne MO, Rosineide ML, Beltrami LR, Zattera AJ, AnflorCT M, Doca TCR, Luz SM (2022) Tensile behavior analysis combined with digital image correlation and mechanical and thermal properties of microfibrillated cellulose fiber/ polylactic acid composites. Polym Test 113: 107665 [CrossRef]
  24. Eichers M, Bajwa D, Shojaeiarani J, Bajwa S (2022) Biobased plasticizer and cellulose nanocrystals improve mechanical properties of polylactic acid composites. Ind Crops Prod 183: 114981 [CrossRef]
  25. Eastwood E, Viswanathan S, O’Brien CP, Kumar D, Dadmun MD (2005) Methods to improve the properties of polymer mixtures: optimizing intermolecular interactions and compatibilization. Polymer 46: 3957-3970 [CrossRef]
  26. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: An overview. Compos B Eng 101: 31-45 [CrossRef]
  27. Carrasco F, Pérez-Maqueda LA, Santana OO, Maspoch MLI (2014) Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid)/ montmorillonite nanocomposites driven by random scission. Polym Degrad Stab 101: 52-59 [CrossRef]
  28. Zou D, Zheng X, Ye Y, Yan D, Xu H, Si S, Li X (2022) Effect of different amounts of bamboo charcoal on properties of biodegradable bamboo charcoal/polylactic acid composites.Int J Biol Macromol 216: 456-464 [CrossRef]
  29. Loyo C, Moreno-Serna V, Fuentes J, Amigo N, Sepúlveda FA, Ortiz JA, Rivas LM, Ulloa MT, Benavente R, Zapata PA (2022) PLA/ CaO nanocomposites with antimicrobial and photodegradation properties. Polym Degrad Stab 197: 109865 [CrossRef]
  30. Lai SM, Wu SH, Lin GG, Don TM (2014) Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites. Eur Polym J 52: 193-206 [CrossRef]
  31. Vinodhini J, Pitchan MK, Bhowmik S, Barandun GA, Jousset P (2020) Effect of different filler reinforcement on poly-ether-ether-ketone based nanocomposites for bearing applications. J Compos Mater 54: 4709-4722 [CrossRef]
  32. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett 6: 794-804 [CrossRef]
  33. Scaffaro R, Sutera F, Mistretta M C, Botta L, La Mantia F P (2017) Structure-properties relationships in melt reprocessed PLA/ hydrotalcites nanocomposites. Express Polym Lett 11: 555-564 [CrossRef]
  34. Coba-Daza S, Carmeli E, Otaegi I, Aranburu N, Guerrica-Echevarria G, Kahlen S, Cavallo D, Tranchida D, Müller AJ (2022) Effect of compatibilizer addition on the surface nucleation of dispersed polyethylene droplets in a self-nucleated polypropylene matrix. Polymer 263: 12551 [CrossRef]
  35. Sarath Kumar P, Jayanarayanan K, Balachandran M (2022) Performance comparison of carbon fiber reinforced polyaryletherketone and epoxy composites: Mechanical properties, failure modes, cryo-thermal behavior, and finite element analysis. J Appl Polym Sci 139: 52494 [CrossRef]
  36. Xiu H, Huang C, Bai H, Jiang J, Chen F, Deng H, Wang K, Zhang Q, Fu Q (2014) Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 55: 1593-1600[CrossRef]