Competitive effect of calcium lactate and epoxidized soil bean oil on crystallization kinetics of polypropylene

Document Type : Original research

Authors

Faculty of Engineering and Technology, King Mongkuk’s University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand

Abstract

The effect of calcium lactate (CL) and epoxidized soil bean (ESO) on the crystallization kinetics of polypropylene (PP) was investigated by using polarized optical microscope (POM) and differential scanning calorimetry (DSC). The experiments were performed under both non-isothermal and isothermal conditions. The development of spherulitic microstructure and crystallization kinetics were influenced by both CL and ESO. CL was an efficient nucleating agent for the crystallization of PP. The addition of CL facilitated faster spherulite growth and crystallization rate, while reduced the spherulite size. An opposite performance was discovered with the incorporation of ESO. Nucleation effect of CL on the PP crystallization was less effective with the presence of ESO. Compared with PP/CL, PP/CL/ESO provided a large spherulite size, slow spherulite growth, and a low crystallization rate. This is attributed to the ESO inhibited the nucleation site of CL. However, the degree of crystallinity and the Avrami exponents remained unchanged with the inclusion of both CL and ESO.

Keywords

Main Subjects


  1. Avalos F, Lopez-Manchado MA, Arroyo M (1998) Crystallization kinetics of polypropylene III. Ternary composites based on polypropylene/ low density polyethylene blend matrices and short glass fibres. Polymer 39: 6173-6178 [CrossRef]
  2. Gumus S, Ozkoc G, Aytac A (2012) Plasticized and unplasticized PLA/organoclay nanocomposites: short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J Appl Polym Sci 123: 2837-2848 [CrossRef]
  3. Al-Mulla A (2007) Isothermal crystallization kinetics of poly(ethylene Terephthalate) and poly(methyl Methacrylate) blends. Express Polym Lett 6: 334-444 [CrossRef]
  4. Mucha M, Królikowski Z (2003) Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim 74: 549-557 [CrossRef]
  5. Yang J, Lu S, Pan L, Luo Q, Song L, Wu L, Yu J (2017) Effect of epoxidized soybean oil grafted poly(12-hydroxy stearate) on mechanical and thermal properties of microcrystalline cellulose fibers/polypropylene composites. Polym Bull 74: 911-930 [CrossRef]
  6. He Y, Zhou Y, Wu H, Bai Z, Chen C, Chen X, Qin S, Guo J (2020) Functionalized soybean/ tung oils for combined plasticization of jute fiber-reinforced polypropylene. Mater Chem Phys 252: 123247 [CrossRef]
  7. Pustak A, Puci I, Denac M, Švab I, Pohleven J, Musil V, Šmit I (2013) Morphology of Polypropylene/silica nano- and microcomposites. J Appl Polym Sci 5: 3099-3106 [CrossRef]
  8. Jing Y, Nai X, Dang L, Zhu D, Wang Y, Dong Y, Li W (2018) Reinforcing polypropylene with calcium carbonate of different morphologies and polymorphs. Sci Eng Compos Mater 25: 745-751 [CrossRef]
  9. Panda BP, Mohanty S, Nayak SK, Pandit S (2012) Fracture study of modified TiO2 reinforced PP/ EPDM composite: mechanical behavior and effect of compatibilization. Int J Plast Technol 16: 89-100 [CrossRef]
  10. Coburn N, Douglas P, Kaya D, Gupta J, McNally T (2018) Isothermal and Non-isothermal Crystallization Kinetics of Composites of Poly(propylene) and MWCNTs. Adv Ind Eng Polym Res 1: 99-110 [CrossRef]
  11. Bhasney SM, Kumar A, Katiyar V (2020) Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Compos B Eng 184: 107717 [CrossRef]
  12. Alghyamah AA, Elnour AY, Shaikh H, Haider S, Poulose AM, Al-Zahrani SM, Almasry WA, Park SY (2021) Biochar/polypropylene composites: a study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability. J King Saud Univ Sci 33: 101409 [CrossRef]
  13. Hwang TI, Kim JI, Joshi MK, Park CH, Kim CS (2019) Simultaneous regeneration of calcium lactate and cellulose into PCL nanofiber for biomedical application. Carbohydr Polym 212: 21-29 [CrossRef]
  14. Suksut B, Khamsiang P, Sinsawat C, Kesorn N (2021) Calcium lactate as renewable fillerof polypropylene: thermal, morphological and mechanical properties. Suan Sunandha Sci Tech J 8: 1-8 [CrossRef]
  15. Garcia M, Vliet GV, Jain S, Schrauwen BAG, Sarkissov A, Zyl WEV, Boukamp B (2004) Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci 6: 169-175 [CrossRef]
  16. Avrami MJ (1939) Kinetics of Phase Change. I General Theory. J Chem Phys 7: 1103-1112 [CrossRef]
  17. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avami equation to fit the data: Guidelines to avoid common problems. Polym Test 26: 222-231 [CrossRef]
  18. Pérez-Camargo RA, Liu GM, Wang DJ, Müller AJ (2022) Experimental and data fitting guidelines for the determination of polymer crystallization kinetics. Chinese J Polym Sci 40: 658-691 [CrossRef]
  19. Gopnna A, Mandapati RN, Thomas SP, Rajan K, Chavali M (2019) Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for guidelines and quantitative analysis. Polym Bull 76: 4259-4274 [CrossRef]
  20. Sedlarik V, Galya T, Emri I, Saha P (2009) Structure and conditioning effect on mechanical behavior of poly(vinyl alcohol)/calcium lactate biocomposites. Polym Compos 30: 1158-1165 [CrossRef]
  21. Liao N, Joshi MK, Tiwari AP, Park CH, Kim CS (2016) Fabrication, characterization and biomedical application of two-nozzle electrospun polycaprolactone/zein-calcium lactate composite nonwoven mat. J Mech Behav Biomed Mater 60: 312-323 [CrossRef]
  22. Yang J, Lu S, Pan L, Luo Q, Song L, Wu L, Yu J (2017) Effect of epoxidized soybean oil grafted poly(12-hydroxy sterate) on mechanical and thermal properties of microcrystalline cellulose fibers/polypropylene composites. Polym Bull 74: 911-930 [CrossRef]
  23. Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112: 170-180 [CrossRef]
  24. He Y, Zhou Y, Wu H, Bai Z, Chen C, Chen X, Qin S, Guo J (2020) Functionalized soybean/ tung oils for combined plasticization of jute fiber-reinforced polypropylene. Mater Chem Phys 252: 123247 [CrossRef]
  25. Zhou H, Ye L, Li S, Li Z, Wei Z, Huang Z, Lu S, Chen D, Zhang Z, Li Y (2022) A bio-based compatibilizer (ESO-g-S-HPG) to improve the compatibility and mechanical properities of CaCO3/HDPE composites. Compos Sci Technol 219: 109251 [CrossRef]
  26. Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocellulose/ PLA composites via bio-epoxy interation: mechanistic study. Mater Des 139: 188-197 [CrossRef]
  27. Khare A, Mitra A, Radhakrishnan S (1996). Effect of CaCO3 on the crystallization behaviour of polypropylene. J Mater Sci 31: 5691-5695 [CrossRef]
  28. Guo L, Chen F, Zhou Y, Liu X, Xu W (2015) The influence of interface and thermal conductivity of filler on the nonisothermal crystallization kinetics of polypropylene/natural protein fiber composites. Compos B Eng 68: 300-309 [CrossRef]
  29. Wang S, Wen B (2022) Effect of functional filler morphology on the crystallization behavior and thermal conductivity of PET resin: a comparative study of three different shapes of BN as heterogeneous nucleating agent. Compos Sci Technol 222: 109346 [CrossRef]
  30. Bicerano J (1998) Crystallization of polypropylene and poly(ethylene terephthalate). J Macromol Sci Polym 38: 391-479 [CrossRef]
  31. Keith HD, Padden FJ (1964) Spherulitic crystallization from the melt. I. fractionation and impurity segregation and their influence on crystalline morphology. J Appl Phys 35: 1270- 1285 [CrossRef]
  32. Ravindranath K, Jog JP (1993) Polymer crystallization kinetics: Poly (ethylene terephthalate) and poly (phenylene sulfide). J Appl Polym Sci 49: 1395-1403 [CrossRef]
  33. Karimi S, Ghasemi I, Abbassi-Sourki F (2019) A study on the crystallization kinetics of PLLA in the presence of graphene oxide and PEG-grafted-graphene oxide: effect on the nucleation and chain mobility. Compos B: Eng 158: 302- 310 [CrossRef]
  34. Müller AJ, Michell RM, Lozenzo AT (2016) Polymer morphology: Principles, characterization, and processing. John Wiley & Sons Inc, Ch.11, 181-203