Effect of quenching temperature and filler rate on the mechanical thermal and physical properties of composites: Polypropylene/calcium carbonate

Document Type : Original research

Authors

1 Ecole Normale Supérieure de Boussaada, Boussaada 28201, Algeria

2 Laboratory of Physical Chemistry of High Polymers, Ferhat Abbas University, Setif 1-Algeria19000

3 Département de Chimie, Université Hassiba Ben Bouali de Chlef, Chlef 02180, Algeria

4 Larbi Ben M’hidi Université, Oum El Bouaghi,-Algeria 4000

5 Department of Chemistry, Laboratory of Phytochemistry and Pharmacology, University of Mohamed Seddik Benyahia, BP. 98,Ouled Aissa, Jijel, Algeria

Abstract

Polypropylene (PP) is a strong, tough, crystalline thermoplastic material with high performance. Because of its diverse thermo-physical and mechanical properties, it is utilized in a wide variety of disciplines. In this study, the impact of free quenching on the thermo-physical characteristics of PP/calcium carbonate (CaCO3) composites was examined. Three distinct heating procedures were used. First, composites were cooled from their melting phase temperature to ambient temperature. Second, composites were cooled from 130°C to a pre-determined and controlled temperature (T: 0°, 20°, 30°, 40°, 50°, 60°, 70°, 80°C). Third, composites were temperature-tested using annealing. The findings suggest that the elongation-at-break and impact strength may be improved following an initial quenching process from the melting phase to ambient temperature. On the other hand, a second quenching process at 0°C produces superior results, and a correlation between mechanical and thermal characteristics is noted; however, while these qualities are increased, others, such as flexibility, density, Vicat softening temperature (VST), and heat distortion temperature (HDT) are negatively impacted.

Keywords

Main Subjects


  1. Essabir H, Raji M, Laaziz SA, Rodrique D, Bouhfid R (2018) Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos Part B Eng 149: 1-11 [CrossRef]
  2. Latreche L, Haddaoui N, Cagiao ME (2017) Calcium carbonate, kaolin and silica filled polypropylene/polystyrene blends: Influence of free quenching. Rev Roum Chim 62: 267-276 [CrossRef]
  3. Karian H (2003) Automotive applications for polypropylene and polypropylene composites. In: Handbook of polypropylene and polypropylene composites, revised and expanded (pp. 592-600), CRC Press
  4. Al-Samhan M, Al-Attar F (2022) Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3. Surf Interfaces 31: 102055 [CrossRef]
  5. Maou S, Meftah Y, Meghezzi A (2023) Synergistic effects of metal stearate, calcium carbonate, and recycled polyethylene on thermo-mechanical behavior of polyvinylchloride. Polyolefins J 10: 1-11 [CrossRef]
  6. Palanikumar K, AshokGandhi R, Raghunath BK, Jayaseelan V (2019) Role of calcium carbonate(CaCO3) in improving wear resistance of polypropylene(PP) components used in automobiles. Mater Today Proc 16: 1363-1371 [CrossRef]
  7. Maou S, Meftah Y, Tayefi M, Meghezzi A, Grohens Y (2022) Preparation and performance of an immiscible PVC-HDPE blend compatibilized with maleic anhydride (MAH) via in-situ reactive extrusion. J Polym Res 29: 161 [CrossRef]
  8. Maou S, Meftah Y, Grohens Y, Kervoelen A, Magueresse A (2023) The effects of surface modified date-palm fiber fillers upon the thermo-physical performances of high density polyethylene-polyvinyl chloride blend with maleic anhydride as a grafting agent. J Appl Polym Sci 140: e53781 [CrossRef]
  9. Looijmans SF, Cavallo D, Merino DH, Martinez JC, Anderson PD, Breemen LC (2023) Shear-induced structure formation in MAH-g-PP compatibilized polypropylenes. Macromolecules 56: 5278-5289 [CrossRef]
  10. Yang N, Zhang ZC, Ma N, Liu HL, Zhan XQ, Li B, Gao W, Tsai FC, Jiang T, Chang CJ, Chiang TC, Shi D (2017) Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride. Results Phys 7: 969-974 [CrossRef]
  11. Fuad MYA, Hanim H, Zarina R, Ishak ZAM, Hassan A (2010) Polypropylene/calcium carbonate nanocomposites - effects of processing techniques and maleated polypropylene compatibiliser. Express Polym Lett 4: 611-620 [CrossRef]
  12. Vargas-isaza C, Posada-correa J, León JB (2023) Analysis of the stress field in photoelasticity used toevaluate the residual stresses of a plastic injection-molded part. Polymers (Basel) 15: 3377 [CrossRef]
  13. Latreche L, Rouabah F, Haddaoui N(2019) Influence of free quenching on mechanical physical and thermal properties of high density polyethylene. Chem Process Eng Res 59: 15-21 [CrossRef]
  14. Zhao J, Wang Z, Niu Y, Hsiao BS, Piccarolo S (2012) Phase transitions in prequenched mesomorphic isotactic polypropylene during heating and annealing processes as revealed by simultaneous synchrotron SAXS and WAXD technique. J Phys Chem B 116: 147-153 [CrossRef]
  15. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J 49: 1057- 1065 [CrossRef]
  16. Merabet S, Rouabah F, Fois M (2019) Heat treatment of isotactic polypropylene: The effect of free quenching from the melt state. Int J Polym Anal Charact 24: 313-325 [CrossRef]
  17. Barka B, Rouabah F, Zouaoui F, Fois M, Nouar Y, Bencid A (2022) Thermophysical behavior of polycarbonate: Effect of free quenching above and below the glass transition temperature. Adv Mater Res 1174: 123-136 [CrossRef]
  18. Rouabah F, Fois M, Ibos L, Boudenne A, Dadache D, Haddaoui N (2007) Mechanical and thermal properties of polycarbonate. II. Influence of titanium dioxide content and quenching on pigmented polycarbonate. J Appl Polym Sci 106: 2710-2717 [CrossRef]
  19. Kahmann S, Nazarenko O, Shao S, Hordiichuk O, Kepenekian M, Even J, Kovalenko MV, Blake GR, Loi MA (2020) Negative thermal quenching in FASnI3 perovskite single crystals and thin films. ACS Energy Lett 5: 2512–2519 [CrossRef]
  20. Srinivasan V, Hasainar H, Singh TN (2022) Experimental study on failure and fracturing attributes of granite after thermal treatments with different cooling conditions. Eng Geol 310: 106867 [CrossRef]
  21. Guo X, Isayev AI (2000) Thermal residual stresses in freely quenched slabs of semicrystalline polymers: Simulation and experiment. J Appl Polym Sci 75: 1404-1415[CrossRef]
  22. Fayolle B, Richaud E, Colin X, Verdu J (2008) Review: Degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. J Mater Sci 43: 6999-7012 [CrossRef]
  23. Latreche L, Haddaoui N, Cagiao ME (2016) The effect of various compatibilizers on thermal, mechanical, and morphological properties of polystyrene/polypropylene blends. Russ J Appl Chem 89: 1713-1721 [CrossRef]
  24. Piekarska K, Piorkowska E, Bojda J (2017) The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym Test 62: 203-209 [CrossRef]
  25. Guevara-Morales A, Figueroa-López U (2014) Residual stresses in injection molded products. J Mater Sci 49: 4399-4415 [CrossRef]
  26. Van Krevelen DW (1972) Properties of polymers. Elsevier, Amsterdam
  27. Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M (2021) Molecular Characterization of Polymer Networks. Chem Rev 121: 5042-5092 [CrossRef]
  28. Parambil NK, Chen BR, Deitzel JM, Gillespie JW (2022) A methodology for predicting processing induced thermal residual stress in thermoplastic composite at the microscale. Compos Part B Eng 231: 109562 [CrossRef]
  29. Doufnoune R, Haddaoui N, Riahi F (2006) Elaboration and characterization of an organic/ inorganic hybrid material: Effect of the interface on the mechanical and thermal behavior of PP/ CaCO3 Int J Polym Mater 55: 815-835[CrossRef]