Thermophysical behavior of date palm fiber-reinforced polyvinylchloride /low-density polyethylene/acrylonitrile butadiene rubber copolymer ternary composite

Document Type : Original research

Authors

1 Laboratoire de Chimie Appliquée, Université Mohamed-Kheider de Biskra, Biskra 07000, Algeria

2 Ecole Normale Supérieure de Boussaada, Boussaada 28201, Algeria

3 Département de Chimie, Université Hassiba Ben Bouali de Chlef, Chlef 02180, Algeria

Abstract

Date palm tree leaf-reinforced polymer composites have important advantages, such as sustainability and low-cost. In the present study, ternary blend composites of polyvinyl chloride (PVC), low-density polyethylene (LDPE), and acrylonitrile butadiene rubber (NBR) copolymer (LDPE/PVC: C0, LDPE/PVC/NBR:C1) as well as reinforced composites with 10, 20, and 30 wt.% of alkali treated date palm fiber (TDPF) (C2, C3 and C4 respectively) were fabricated using a melt blending extrusion process. TDPF and the NBR copolymer were used to improve the interfacial bonding, compatibility, and thermo-mechanical properties of the composite, yielding the highest tensile strength of 32 MPa for the composite containing 10 wt.% TDPF. Moreover, the morphological analysis showed that the incorporation of the NBR copolymer enhanced the compatibility of the blend. Mechanical tests revealed that the hardness of the TDPF/PVC/LDPE/NBR composite increased in the order C2 (450 MPa) < C3 < C4 (540 MPa). In addition, the flexural and tensile moduli of the composite increased with increasing TDPF content, with the highest values (534 and 1585 MPa, respectively) observed for composite C4. Thermal analysis revealed increased Tonset and T10% values, indicating an improved thermal stability of the composite. This study clearly demonstrates that the (DPF/PVC/LDPE/NBR) composites can be used in various high-tech engineering applications, which require excellent properties.

Keywords

Main Subjects


  1. Awad S, Zhou Y, Katsou E, Fan M (2020) A critical review on date palm tree (Phoenix dactylifera L.) fibres and their uses in bio-composites, Springer, Netherlands
  2. Elseify LA, Midani M, Shihata LA, El-Mously H (2019) Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications. Cellulose 26: 2209-2232
  3. Ovalı S, Sancak E (2022) Investigation of mechanical properties of jute fiber reinforced low density polyethylene composites. J Nat Fibers19: 3109-3126
  4. Dehouche N, Idres C, Kaci M, Zembouai I, Bruzaud S (2020) Effects of various surface treatments on Aloe Vera fibers used as reinforcement in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) biocomposites. Polym Degrad Stab 175: 109131
  5. Chaudhary V, Ahmad F (2020) A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polym Test 91: 106792
  6. Mahdi E, Ochoa DR, Vaziri A, Dean A, Kucukvar M (2021) Khalasa date palm leaf fiber as a potential reinforcement for polymeric composite materials. Compos Struct 265: 113501
  7. Masri T, Ounis H, Sedira L, Kaci A, Benchabane A (2018) Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Constr Build Mater 164: 410-418
  8. Meftah Y, Tayefi M, Fellouh F, Chouieur H, Maou S, Meghezzi A (2020) Influence of alkali treatment and dune sand content on the properties of date palm fiber reinforced unsaturated polyester hybrid composites. Rev des Compos des matériaux avancés 30: 161-167
  9. Habila T (2023) Thermal and physical properties of hybrid composites made from used PET bottles and date palm fibers filled with unsaturated polyester. ASEAN J Chem Eng 23: 94-102
  10. Belakroum R, Gherfi A, Kadja M, Maalouf C, Lachi M, El Wakil N, Mai TH (2018) Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr Build Mater 184: 330-343
  11. Bourmaud A, Dhakal H, Habrant A, Padovani J, Siniscalco D, Ramage MH, Beaugrand J, Shah DU (2017) Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Compos Part A Appl Sci Manuf 103: 292-303
  12. Ghori W, Saba N, Jawaid M, Asim M (2018) A review on date palm (phoenix dactylifera) fibers and its polymer composites. IOP Conf Ser Mater Sci Eng 368: 012009
  13. Ray R, Narayan Das S, Das A (2019) Mechanical, thermal, moisture absorption and biodegradation behaviour of date palm leaf reinforced PVA/starch hybrid composites. Mater Today Proc 41: 376-381
  14. Awad S, Hamouda T, Midani M, Katsou E, Fan M (2023) Polylactic acid (PLA) reinforced with date palm sheath fiber bio-composites: Evaluation of fiber density, geometry, and content on the physical and mechanical properties. J Nat Fibers 20: 2143979
  15. Liu Y, Zhou C, Li F, Liu H, Yang J (2020) Stocks and flows of polyvinyl chloride (PVC) in China: 1980-2050. Resour Conserv Recycl 154: 104584
  16. Suresh SS, Mohanty S, Nayak SK (2020) Effect of recycled poly(vinyl chloride) on the mechanical, thermal and rheological characteristics of recycled poly(methyl methacrylate). J Mater Cycles Waste Manag 22: 698-710
  17. Ye L, Qi C, Hong J, Ma X (2017) Life cycle assessment of polyvinyl chloride production and its recyclability in China. J Clean Prod 142: 2965-2972
  18. Jiang L, He C, Fu J, Xu D (2019) Enhancement of wear and corrosion resistance of polyvinyl chloride/sorghum straw-based composites in cyclic sea water and acid rain conditions. Constr Build Mater 223: 133-141
  19. Díaz S, Ortega Z, McCourt M, Kearns MP, Benítez AN (2018) Recycling of polymeric fraction of cable waste by rotational moulding. Waste Manag 76: 199-206
  20. Wu J, Tang Z, Liu X, Lin W, Feng M, Lin X, Gu Y, Li Y, Yi G (2020) A facile strategy improving poly(vinyl chloride) stability by introducing unsaturated maleic acid-sorbitol ester and zinc maleic acid-sorbitol ester complex. Polym Degrad Stab 181: 109343
  21. Li Y, Wang H, Jiang L, Zhang W, Li R, Chi Y (2015) HCl and PCDD/Fs emission characteristics from incineration of source-classified combustible solid waste in fluidized bed. RSC Adv 5: 67866-67873
  22. Bittencourt PRS, Scremin FR (2019) Evolved gas analysis of PE: PVC systems thermodegradation under inert and oxidizing atmosphere. J Polym Environ 27: 612-617
  23. Khakberdiev EO, Berdinazarov QN, Toshmamatov DA, Ashurov NR (2022) Mechanical and morphological properties of poly(vinyl chloride) and linear low-density polyethylene polymer blends. J Vinyl Addit Technol 28: 659-666
  24. Maou S, Meftah Y, Meghezzi A (2023) Synergistic effects of metal stearate, calcium carbonate, and recycled polyethylene on thermo-mechanical behavior of polyvinylchloride. Polyolefins J 10: 1-11
  25. Maou S, Meftah Y, Grohens Y, Kervoelen A (2023) The effects of surface modified date-palm fiber fillers upon the thermo-physical performances of high density polyethylene-polyvinyl chloride blend with maleic anhydride as a grafting agent. J Appl Polym Sci 140: e53781
  26. Maou S, Meftah Y, Tayefi M, Meghezzi A, Grohens Y (2022) Preparation and performance of an immiscible PVC-HDPE blend compatibilized with maleic anhydride (MAH) via in-situ reactive extrusion. J Polym Res 29: 161
  27. Xu C, Fang Z, Zhong J (1993) Study on compatibilization-crosslinking synergism in PVC/LDPE blends. Die Angew Makromol Chemie 212: 45-52
  28. Fang Z, Xu C, Bao S, Zhao Y (1997) In situ crosslinking and its synergism with compatibilization in polyvinyl chloride/ polyethylene blends. Polymer (Guildf) 38: 131-133
  29. Xu C, Fang Z, Zhong J (1997) Study on phase dispersion-crosslinking synergism in binary blends of poly(vinyl chloride) with low density polyethylene. Polymer (Guildf) 38: 155-158
  30. Ma G, Fang Z, Xu C (2003) Phase dispersioncrosslinking synergism in binary blends of poly(vinyl chloride) with low-density polyethylene: Entrapping phenomenon in PVC/ LDPE/DCP blend. J Appl Polym Sci 88: 1296-1303
  31. Fang Z, Ma G, Liu C, Xu C (2004) Morphology evolution of immiscible LDPE/PVC blends in the presence of compatibilizer and phase dispersant. J Appl Polym Sci 91: 763-772
  32. Prachayawarakorn J, Khamsri J, Chaochanchaikul K, Sombatsompop N (2006) Effects of compatibilizer type and rubber-wood sawdust content on the mechanical, morphological, and thermal properties of PVC/LDPE blend. J Appl Polym Sci 102: 598-606
  33. Maou S, Meghezzi A, Nebbache N, Meftah Y (2019) Mechanical, morphological, and thermal properties of poly(vinyl chloride)/low-density polyethylene composites filled with date palm leaf fiber. J Vinyl Addit Technol 25: E88–E93
  34. Maou S, Meghezzi A, Grohens Y, Meftah Y, Kervoelen A, Magueresse A (2021) Effect of various chemical modifications of date palm fibers (DPFs) on the thermo-physical properties of polyvinyl chloride (PVC)–high-density polyethylene (HDPE) composites. Ind Crops Prod 171: 113974
  35. Berkouk A, Meghezzi A, Chelali H, Soltani MT (2021) Mechanical, morphological, thermal and dynamic study of composites of unsaturated polyesters-date palm leaf fiber DPLF. Rev des Compos des matériaux avancés 31: 317-323
  36. Salmah H, Romisuhani A, Akmal H (2013) Properties of low-density polyethylene/palm kernel shell composites: Effect of polyethylene co-acrylic acid. J Thermoplast Compos Mater 26: 3-15
  37. Mishra T, Mandal P, Rout AK, Sahoo D (2022) A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Compos C: Open Access 9:100298
  38. Zhao X, Niu K, Xu Y, Peng Z, Jia L, Hui D, Zhang L (2016) Morphology and performance of NR/NBR/ENR ternary rubber composites. Compos Part B Eng 107: 106-112
  39. Inuwa IM, Hassan A, Samsudin SA, Mohammad Haafiz M, Jawaid M (2017) Interface modification of compatibilized polyethylene terephthalate/ polypropylene blends: Effect of compatibilization on thermo-mechanical properties and thermal stability. J Vinyl Addit Technol 23: 45-54
  40. Thongpin C, Santavitee O, Sombatsompop N (2006) Degradation mechanism and mechanical properties of PVC in PVC-PE melt blends: Effects of molecular architecture, content, and MFI of PE. J Vinyl Addit Technol 12: 115-123
  41. Sombatsompop N, Sungsanit K, Thongpin C (2004) Structural changes of PVC in PVC/ LDPE melt-blends: Effects of LDPE content and number of extrusions. Polym Eng Sci 44: 487-495
  42. Khalil AM, Rabie ST (2021) Mechanical, thermal and antibacterial performances of acrylonitrile butadiene rubber/polyvinyl chloride loaded with Moringa oleifera leaves powder. J Therm Anal Calorim 143: 2973-2981
  43. Batuer A, Chen D, Xin Q, He X, Zhang J, Huang Z (2020) Mechanical properties of waste cotton and their changes during early pyrolysis. J Anal Appl Pyrolysis 149: 104855
  44. Al-Otaibi M, Alothman OY, Alrashed MM, Anis A, Naveen J, Jawaid M (2020) Characterization of date palm fiber-reinforced different polypropylene matrices. Polymers (Basel) 12: 597