Effect of replacing EPDM with high molecular weight amorphous poly(1-hexene) on the mechanical behavior of iPP/iPP-g-MA/EPDM blends

Document Type : Original research


1 Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran, P.O.Box:71993-3

2 Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran

3 Faculty of Engineering, Iran Polymer and Petrochemical Institute, Tehran, Iran, P.O. Box: 14975-112


Varying amounts of a high molecular weight poly(1-hexene) (PH, Mv=1.7×106 Da) are substituted for EPDM in an iPP/iPP-g-MA/EPDM blend (weight ratio: 76:4:20) and mechanical properties as well as phase morphology of the blends are studied and compared. The results show that by substituting the entire EPDM with PH, the tensile strength-at-break increases from 18.7 to 21.1 MPa, elongation-at-break increases from 15.5% to 370.8%, and impact strength increases from 6.4 to 50.1 kJ.m-2. Dynamic mechanical thermal analysis (DMTA) of the blends proved their immiscibility and SEM analysis confirmed these findings by showing droplet-matrix morphologies. Studying the creep behavior of the samples shows that the blends containing PH have more creep so that by substituting all EPDM in the blends with PH, the permanent deformation increases from 0.425% to 0.505%. According to the results, PH is introduced as a candidate for improving the impact properties of iPP/iPP-g-MA/EPDM blend.


Main Subjects

  1. Drobny J (2015). Introduction to thermoplastic elastomers, Landolt-Börnstein: Group VIII advanced materials and technologies vol. 13 (Specialty Thermoplastics), Springer-Verlag Berlin Heidelberg, Berlin, Heilderberg, page 114
  2. Panigrahi H, Sreenath PR, Kotnees DK (2020) Unique compatibilized thermoplastic elastomer with high strength and remarkable ductility: Effect of multiple point interactions within a rubber-plastic blend. ACS Omega 5: 12789-12808
  3. Nejabat G-R, Nekoomanesh M, Arabi H, Salehi-Mobarakeh H, Zohuri G-H, Mortazavi SMM, Ahmadjo S, Miller SA (2015) Study of Ziegler-Natta/(2-PhInd)2ZrCl2 hybrid catalysts performance in slurry propylene polymerization. Polyolefins J 2: 73-87
  4. Nejabat G-R, Nekoomanesh M, Arabi H, Salehi- Mobarakeh H, Zohuri G-H, Omidvar M, Miller SA (2013) Synthesis and microstructural study of stereoblock elastomeric polypropylenes from metallocene catalyst (2-PhInd)2ZrCl2 activated with cocatalyst mixtures. J Polym Sci Pol Chem 51: 724-731
  5. Nejabat G-R, Nekoomanesh M, Arabi H, Salehi- Mobarakeh H, Zohuri G-H, Omidvar M, Miller SA (2012) Synthesis of stereoblock elastomeric poly (propylene)s using a (2-PhInd)2ZrCl2 metallocene catalyst in the presence of cocatalyst mixtures: Study of activity and molecular weight. Macromol React Eng 6: 523-529
  6. Cobzaru C, Hild S, Boger A, Troll C, Rieger B (2005) “Dual-side” catalysts for high and ultrahigh molecular weight homopolypropylene elastomers and plastomers. Coord Chem Rev 250: 189-211
  7. Panda BP, Mohanty S, Nayak SK (2015) Mechanism of toughening in rubber toughened polyolefin-A review. Polym Plast Technol Eng 54: 462–473
  8. Nwabunma D, kyo T (Eds.) (2008) Polyolefin blends. John Willey and Sons, Hoboken, New Jersey, 225-226
  9. Rabinovitch EB, Summers JW, Smith G (2003) Impact modification of polypropylene. J Vinyl Addit. Technol 9: 90-95
  10. Dikobe DG, Luyt AS (2009) Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites. Express Polym Lett 3: 190-199
  11. Cheraghi H, Ghasemi FA (2013) Morphology and mechanical properties of PP/LLDPE blends and ternary PP/LLDPE/Nano-CaCO3 composites. Strength Mater 45: 730-738
  12. Penava NV, Rek V, Houra IF (2012) Effect of EPDM as a compatibilizer on mechanical properties and morphology of PP/LDPE blends. J Elastom Plast 45: 391-403
  13. Lin J-H, Pan Y-J, Liu C-F, Huang, C-L, Hsieh C-T, Chen C-K, Lin Z-I, Lou C-W (2015) Preparation and compatibility evaluation of polypropylene/ high density polyethylene polyblends. Materials 8: 8850-8859
  14. Chandran N, Chandran S, Maria HJ, Thomas S (2015) Compatibilizing action and localization of clay in a polypropylene/natural rubber (PP/ NR) blend. RSC Adv 5: 86265-86273
  15. Sun H, Feng J, Wang J, Yu B, Sheng J (2012) Influence of mixing technique on microstructure and impact properties of isotactic polypropylene/ poly (cis-butadiene) rubber blends. J Macromol Sci Phys 51: 328-337
  16. Szabó P, Epacher E, Földes E, Pukánszky B (2004) Miscibility, structure and properties of PP/PIB blends. Mater Sci Eng A 383: 307-315
  17. Bartz KW, Floyd JC, Meka P, Stehling FC (1993) Compatible polypropylene/poly (1-butene) blends and fibers made therefrom.WO1993006168A1
  18. Hernández M, Ichazo MN, González J, Albano C, Santana O (2008) Impact behavior of polypropylene/styrene-butadiene-styrene block copolymer blends. Acta Microsc 17: 66-71
  19. Utracki LA (1998) Commercial polymer blends, Springer Science & Business Media, 1st ed, 267-267
  20. Svoboda P, Theravalappil R, Svobodova D, Mokrejs P, Kolomaznik K, Mori K, Ougizawa T, Inoue T (2010) Elastic properties of polypropylene/ethylene–octene copolymer blends. Polym Test 29: 742-748
  21. Gharzouli N, Doufnounea R, Riahi F, Bouchareb S (2019) Effects of nanosilica filler surface modification and compatibilization on the mechanical, thermal and microstructure of PP/ EPR blends. J Adhes Sci Technol 33: 445-467
  22. da Silva NAL, Coutinho FMB (1996) Some properties of polymer blends based on EPDM/ Polymer Testing 15: 45-52
  23. Ezzati P, Ghasemi I, Karrabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization. Iran Polym J 17: 669-679
  24. Ahmadjo S (2016) Preparation of ultra high molecular weight amorphous poly (1-hexene) by a Ziegler–Natta catalyst. Polym Adv Technol 27: 1523-1529
  25. Zarei S, Nejabat G-R, Mortazavi SMM, KhajehPour-Tadavani S (2020) Thermal and tensile behavior of LLDPE films containing limited amounts of an oxo-biodegradable additive and/or amorphous poly (1-hexene) before and after UV irradiation. Polyolefins J 7: 111-119
  26. Tam WY, Cheung T, Li RKY (1996) An investigation on the impact fracture characteristics of EPR toughened polypropylene. Polym Test 15: 363-380
  27. van der Wal A, Nijhof R, Gaymans RJ (1999) Polypropylene–rubber blends: 2. The effect of the rubber content on the deformation and impact behavior. Polymer 40: 6031-6044
  28. Yang K, Liu Y, Yan Z, Tian Y, Liu Y, Jing Z, Li J, Li S (2020) Enhanced morphology-dependent tensile property and breakdown strength of impact copolymer for cable insulation. Materials 13: 3935
  29. Kurt G, Kasgoz A (2021) Effects of molecular weight and molecular weight distribution on creep properties of polypropylene homopolymer. J Appl Polym Sci 138: 50722