Biobased polyester from soybean oil: Synthesis, characterization and degradation studies

Document Type : Original research

Authors

1 Grupo de Polímeros GPOL,Facultad Regional San Francisco,Universidad Tecnológica Nacional,X2400SQF, Córdoba,Argentina

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, Argentina

3 Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, X5000HUA, Argentina

Abstract

Industrially used polymers derived from fossil fuels have a negative environmental impact when being disposed of. They could be efficientlyreplaced by natural polymers, which are potentially degradable and which can match or even surpass them in mechanical performance. In this work, a rigid thermosetting polymer is obtained by copolymerization of maleinated acrylated epoxidized soybean oil (MAESO) with styrene (St). MAESO is synthetized by epoxidation, acrylation and maleinization from industrial soybean oil (SO). Resin characterization is performed using FT-IR, 1H NMR and SEC, while copolymer characterization includes a mechanical test, degradation test and SEM. The aim of this work is the replacement of unsaturated polyester (UP) and the optimization of the SO modificationreaction in MAESO. The replacement of UP by 25, 50 and 100% of MAESO enables improvements in the mechanical properties. Additionally, it is assessed whether the replacement of UP by MAESO is enough to improve the degradation properties, and the effect of degradation on the mechanical properties is analyzed. MAESO-St copolymers improve the degradation process in relation to UP, and 240 days of in vitro degradation in the presence of Aspergillus niger and Alternaria alternata fungi causes cracks, surface damage and changes in the mechanical properties of the degraded copolymer.

Keywords


  1. Scott G (2002) Why degradable polymers? In: Degradable Polymers, Scott G (ed.), Springer, Dordrecht, 1–15
  2. Ebewele RO (2000) Polymer science and technology, CRC Press, New York
  3. O´Neill TJ (2003) Life cycle assessment and environmental impact of polymeric products. iSmithers Rapra Publishing
  4. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from Renewable Resources: Opportunities and challenges in the green materials world. J Polym Environ 10:19– 26
  5. Armylisas AHN, Hazirah MFS, Yeong SK, Hazimah AH, (2017) Modification of olefinic double bonds of unsaturated fatty acids and other vegetable oil derivatives via epoxidation : A review. Grasas y Aceites 68: 1–11
  6. Del Campo López EM (2006) Polimerización de aceite de soya vía radiación gamma, caracterización morfológica y estructural, Thesis, Universidad Autónoma del Estado de México
  7. Lligadas Puig G (2006) Biobased thermosets from vegetable oils: synthesis, characterization, and properties, PhD Thesis, Universidad Rovira y Virgili, Tarragona
  8. Saithai P, Lecomte J, Dubreucq E, Tanrattanakul V (2013) Effects of different epoxidation methods of soybean oil on the characteristics of acrylated epoxidized soybean oil-co-poly (methyl methacrylate) copolymer. eXPRESS Polym Let 7: 910–924
  9. Habib F, Bajpai M, (2011) Chemistry synthesis and characterization of acrylated epoxidized soybean oil for UV cured coatings. Chem Chem Technol 5: DOI: 10.23939/chcht05.03.317
  10. Plochocka K, Liu XJ, Tallon MA, Musa OM (2016) The quintessential alternating copolymer family: Alkyl vinyl ether co-maleic anhydride copolymers. In: Handbook of maleic anhydride based materials, Musa OM (ed), Springer, Cham, 211-250
  11. Haq M, Burgueño R, Mohanty AK, Misra M (2008) Hybrid bio-based composites from blends of unsaturated polyester and  soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68: 3344–3351
  12. Akesson D, Skrifvars M, Walkenström P (2009) Preparation of thermoset composites from natural fibres and acrylate modified soybean oil resins. J Appl Polym Sci 14: 2502–2508
  13. Lu J, Khot S, Wool RP (2005) New sheet molding compound resins from soybean oil. I. Synthesis and characterization. Polymer 46: 71–80
  14. Lu J, Wool RP (2007) Sheet molding compound resins from soybean oil: Thickening behavior and mechanical properties. Polym Eng Sci 47: 1469-1479
  15. Wu Y, Li K, (2017) Replacement of styrene with acrylated epoxidized soybean oil in an unsaturated polyester resin from propylene glycol and maleic anhydride. J Appl Polym Sci 134: 45056
  16. Zhang Y, Li Y, Thakur K, Wang L, Gu J (2018) Bio-based reactive diluents as sustainable replacements for styrene in MAESO resin. RSC Adv 8: 13780-13788
  17. Sun LJ, Yao C, Zheng HF, Lin J (2012) A novel direct synthesis of polyol from soybean oil. Chinese Chem Lett 23: 919-922
  18. Bernard M (2020) Optimización del  proceso de producción de materiales entrecruzados derivados de poliésteres insaturados a partir de aceites vegetales (soja), PhD Thesis, Facultad de Ciencias Químicas - Unversidad Nacional de Córdoba, Argentina
  19. Petrovic ZS, Zlatanic A, Lava CC, Sinadinovic- Fiser S (2002) Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids – kinetics and side reactions. Eur J Lipid Sci Technol 104: 293-299
  20. ASTM D3644-15 (2015) Standard test method for acid number of styrene-maleic anhydride resins, West Conshohocken, PA, USA
  21. ASTM D790 - Materials (2017) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating, West Conshohocken, PA, USA
  22. ASTM D6110 (2018) Standard test method for determining the  charpy  impact  resistance of notched specimens of plastics. West Conshohocken, PA, USA
  23. ASTM D2240 (2004) Standard test method for rubber property-durometer, West Conshohocken, PA, USA
  24. Di Rienzo JA, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat versión 2018, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina,  http://www.infostat.com.ar
  25. Spontón M, Casis N, Raud B, Ríos L, Simonetta A (2013) Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from Castor oil. Int Biodeter Biodegr 85: 85-94
  26. Gamage PK, O Brien M, Karunanayake L (2009) Epoxidation of some vegetable oils and their hydrolysed products with peroxyformic acid - optimised to industrial scale. J Natn Sci Found Sri Lanka 37: 229-240
  27. Rengasamy S, Mannari V (2013) Progress in organic coatings development of soy-based UV- curable acrylate oligomers and study of their film properties. Prog Org Coatings 76: 78-85
  28. Wang R, Schuman TP (2013) Vegetable oil- derived epoxy monomers and polymer blends: A comparative study with review. Express Polym Lett 7: 272-292
  29. Bocqué M, Voirin C, Lapinte V, Caillol S, Robin J (2016) Petro-based and bio-based plasticizers: chemical structures to plasticizing properties. J Polym Sci Pol Chem 54: 11-33
  30. Ueberreiter K, Kanig G (1952) Self-plasticization of polymers. J Colloid Sci 7: 569-583
  31. Pham PD, Lapinte V, Raoul Y, Robin J (2014) Lipidic polyols using thiol-ene/yne strategy for crosslinked polyurethanes. J Polym Sci Pol Chem 52: 1597-1606
  32. Matcham SE, Jordan BR, Wood DA, (1985) Applied microbiology biotechnology estimation of fungal biomass in a solid substrate by three independent methods. Appl Microbiol Biotechno 21: 108-112
  33. Kim D (2003) Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 61: 300-308
  34. Reis RL, San Román J (2004) Understanding enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In: Biodegradable systems in tissue engineering and regenerative medicine, CRC Press, 177-202
  35. Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: A review. J Biochem Tech 6: 952-961
  36. Pathak VM (2017) Review on the current status of polymer degradation: A microbial approach. Bioresour Bioprocess 4: 15