Rheological, thermal and tensile properties of PE/nanoclay nanocomposites and PE/nanoclay nanocomposite cast films

Document Type: Original research

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, University of Hormozagn, Bandar-Abbas, Iran

2 Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran

Abstract

The effects of three different mixers, two different feeding orders and nanoclay content on the structure development and rheological properties of PE/nanoclay nanocomposite samples were investigated. Fractional Zener and Carreau–Yasuda models were applied to discuss the melt linear viscoelastic properties of the samples. Moreover, scaling law for fractal networks was used to quantify clay dispersion depended on the PE matrix structure. The simultaneous feeding resulted in better dispersion and melt intercalation for the nanoclay as compared to the compatibilizer/nanoclay masterbatch feeding. The twin screw extruder (Brabender DSE 25 model) showed greater potential for melt intercalation of PE/nanoclay as compared to the internal mixers (Brabender W50 and Haake Rheomix 3000 batch mixer) . Comparing the thermal Analysis of PE, PE/PE-g-MA and PE/nanoclay samples by DSC technique showed the opposite effect of the compatibilizer and the nanoclay to crystallization behavior of PE. PE/nanoclay cast film samples were produced with three different draw ratios. X-ray diffraction structural analysis in conjunction with the melt linear viscoelastic measurements confirmed that the PE/nanoclay cast film produced at higher draw ratio showed the more effective melt intercalation. Tensile test showed the machine direction modulus and yield strength of both PE and PE/nanoclay cast film samples reduced with increase of draw ratio

Keywords

Main Subjects


  1. Mourad AHI, Dehbi A (2014) On use of trilay­er low density polyethylene greenhouse cover as substitute for monolayer cover. Past Rubber Compos 43 : 111-121
  2. Ewais AMR and Rowe RK (2014) Effects of blown film process on initial properties of HPDE geomembranes of different thicknesses. Geosynth Int 21: 62-82
  3. Weltschev M (2011) Comparison between ma­terial parameters of polyethylene grades and the test performance behaviour of packaging for the transport of dangerous goods. Packag Technol Sci 24: 361-371
  4. Tian Y, Yu H, Wu S, Ji G, Shen J (2004) Study on the structure and properties of EVA/clay nano­composites. J Mater Sci 39: 4301-4303
  5. Srinath G and Gnanamoorthy R (2007) Effect of organoclay addition on the two-body abrasive wear characteristics of polyamide 6 nanocompos­ites. J Mater Sci 42: 8326-8333
  6. Sheng D, Tan J, Liu X, Wang P, Yang Y (2011) Effect of organoclay with various organic modi­fiers on the morphological, mechanical, and gas barrier properties of thermoplastic polyurethane/ organoclay nanocomposites. J Mater Sci. 46: 6508-6517
  7. Abdolrasouli MH, Nazockdast H, Sadeghi GMM, Babaei A (2014) Polylactide/polyethylene/or­ganoclay blend nanocomposites: Structure, me­chanical and thermal properties. Polym Plast Technol Eng 53: 1417-1424
  8. Arunvisut S, Phummanee S, Somwangthanaroj A, Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocom­posites. J Appl Polym Sci 106: 2210-2217
  9. Al-Qadhi M , Merah N, Gasem ZM (2013) Me­chanical properties and water uptake of epoxy/ clay nanocomposites containing different clay loadings. J Mater Sci 48: 3798-3804
  10. Nigmatullin R, Gao F, Konovalova V (2008) Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci 43: 5728-5733
  11. Hong SI, Rhim JW (2012) Preparation and prop­erties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion. LWT - Food Sci Techno 48: 43-51
  12. Gul S, Kausar A, Muhammad B, Jabeen S (2016) Research progress on properties and applications of polymer/clay nanocomposite. Polym Plast Technol Eng 55: 684-703
  13. Tang Y, Gao P, Ye L, Zhao C (2010) Organoclay-modified thermotropic liquid crystalline polymers as viscosity reduction agents for high molecular mass polyethylene. J Mater Sci 45: 5353-5363
  14. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho, JW, Paul DR (2001) Effect of melt pro­cessing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42: 9513-9522
  15. Ujianto O, Jollands M, Kao N (2015) Polyethyl­ene/clay nanocomposites prepared in an internal mixer: Effect of processing variable on mechani­cal properties. Adv Mat Res 1105: 46-50
  16. Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87: 183-189
  17. Santos KS, Liberman MAS, Oviedo RS, Mauler RS (2014) Polyolefin-based nanocomposites: The effect of organosilane on organoclay dispersion. J Mate Sci 49: 70-78
  18. Abdolrasouli MH, Behzadfae E, Nazockdast H, Sharif F (2012) Structure development and melt viscoelastic properties of PE/organoclay nano­composite blown films. J Appl Polym Sci 125 (SUPPL. 1): E435-E444
  19. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene - clay nano­composites. Express Polym Lett 1: 123-131
  20. Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characteriza­tion and quantifying clay dispersion by melt rhe­ology. Polymer 48: 4492-4502
  21. Sánchez-Valdes S, López-Quintanilla M L, Ramírez-Vargas E, Medellín-Rodríguez FJ, Guti­errez-Rodriguez JM (2006) Effect of ionomeric compatibilizer on clay dispersion in polyethyl­ene/clay nanocomposites. Macromol Mater Eng 291: 128-136
  22. Jeong HM, Kim BC, Kim EH (2005) Structure and properties of EVOH/organoclay nanocom­posites. J Mate Sci 40: 3783-3787
  23. Abdolrasouli MH, Nazockdast H, Sadeghi GMM, Kaschta J (2015) Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nano­composites. J Appl Polym Sci 132: DOI 10.1002/ app.41300
  24. Dorigato A, Pegoretti A, Penati A (2010) Linear low-density polyethylene/silica micro- and nano­composites: Dynamic rheological measurements and modelling. Express Polyme lett 4: 115-129
  25. Nazockdast E, Nazockdast H, Goharpey F (2008) Linear and nonlinear melt-state viscoelastic prop­erties of polypropylene/organoclay nanocompos­ites. Polym Eng Sci 48: 1240-1249
  26. Tang Y, Gao P, Ye L, Zhao C, Lin W (2010) Organoclay/thermotropic liquid crystalline polymer nanocomposites. Part V: morphological and rheo­logical studies. J Mater Sci 45: 2874-2883
  27. Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A (2008) Low density polyethylene– montmorillonite nanocomposites for film blow­ing. Eur Polym J 44: 270-286
  28. Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES (2008) Rheological, me­chanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J 44: 1346-1357
  29. Shah RK, Krishnaswamy RK, Takahashi S, Paul DR (2006) Blown films of nanocomposites pre­pared from low density polyethylene and a so­dium ionomer of poly(ethylene-co-methacrylic acid). Polymer 47: 6187-6201
  30. Marquez A, Quijano J, Gaulin M (1996) A cali­bration technique to evaluate the power-law pa­rameters of polymer melts using a torque-rheom­eter. Polym Eng Sci 36: 2556-2563
  31. Carreau PJ, De KD, Chhabra RP (1997) Rheol­ogy of polymeric systems: Principles and applica­tions. Hanser Publishers
  32. Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42: 4772-4779
  33. Potanin AA (1991) On the mechanism of aggre­gation in the shear flow of suspensions. J Colloid Interface Sci 145(1): 140-157
  34. Xie Y, Yu D, Kong J, Fan X, Qiao W (2006) Study on morphology, crystallization behaviors of high­ly filled maleated polyethylene-layered silicate nanocomposites. J Appl Polym Sci 100: 4004- 4011
  35. Li C, Kong Q, Zhao J, Zhao D, Fan Q, Xia Y (2004) Crystallization of partially miscible linear low-density polyethylene/poly(ethylene-co-vin­ylacetate) blends. Mater Lett 58: 3613-3617
  36. Heymans N, Bauwens JC (1994) Fractal rheolog­ical models and fractional differential equations for viscoelastic behavior. Rheo Acta 33: 210-219
  37. Friedrich C (1993) Mechanical stress relaxation in polymers: Fractional integral model versus fractional differential model. J NonNewton Fluid 46: 307-314
  38. Sailer C, Handge UA (2007) Melt viscosity, elas­ticity, and morphology of reactively compatibil­ized polyamide 6/styrene acrylonitrile blends in shear and elongation. Macromolecules 40: 2019- 2028