Production of titanium tetrachloride (TiCl4) from titanium ores: A review

Document Type : Review

Authors

Iran Polymer and Petrochemical Institute, P.O Box 14965-115, Tehran, Iran

Abstract

Titanium (Ti) is the ninth most abundant element on earth. The titanium mineral ores are widely distributed in different parts of the world. The two main ores of titanium include rutile (TiO2) and ilmenite (FeO.TiO2). It is aimed to provide the readers with an insight to the main processes currently employed to extract and recover titanium tetrachloride (TiCl4) from different titanium ores. Due to the crucial importance of TiCl4 catalyst in the synthesis and polymerization of polyolefins, the present work examines the literature and developments made in the processing of ilmenite and rutile ores for the extraction of TiCl4. The attention has been paid to the chlorination processes and the main parameters affecting the recovery of TiCl4. Different approaches developed to date are reviewed. Different processes, reaction mechanisms and conditions as well as the kinetic models developed for extraction and purification of TiCl4 in fluidized bed reactors are also reviewed. A literature survey on the combined fluidized bed reactor systems developed for achieving a high-grade synthetic rutile via selective chlorination of low-grade titanium ores having high metal oxides content such as magnesium oxide (MgO) and calcium oxide (CaO) is also reported. Different strategies adopted to avoid agglomeration process during the extraction process are discussed too.

Keywords

Main Subjects


  1. Kothari NC, (1974) Recent developments in processing ilmenite for titanium. Int J Min Proc 1: 287-305
  2. Budinski KG (1988) Surface engineering for wear resistance. Prentice Hall, Englewood Cliffs, 420-460
  3. Knittel D (1983) Titanium and titanium alloys. In: Grayson M, Ed., Encyclopedia of chemical technology, 3rd Ed., John Wiley and Sons, Hoboken, 98-130
  4. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Treatise of geochemistry, Rudnick RL, Ed., Vol. 3, Elsevier, Amsterdam, 1-64
  5. Gambogi J (2009) Titanium, 2007 Minerals Yearbook. US Geological Survey, U.S. Government Printing Office, Washington DC, 195-220
  6. Stwertka A (1998) Guide to the elements. Revised Edition, Oxford University Press, London, 240- 270
  7. Williams VA (1990) WIM 150 Detrital heavy mineral deposit. In: Geology of the mineral deposits of Australia and papua New Guinea, Hughes FE, Ed., Monograph 14, Australasian institute of mining and metallurgy, 1609-1614
  8. Whitehead J (1983) Titanium compounds (Inorganic). In: encyclopedia of chemical technology, Grayson M., Ed., 3rd Ed., John Wiley and Sons, Hoboken, 131-176
  9. Mandal BM (2013) Fundamentals of polymerization; World scientific: Hackensack, NJ, USA, 46-50
  10. Albizzati E, Galimberti M (1998) Catalysts for olefins polymerization. Catal Today 41: 415-421
  11. Fu T, Cheng R, He X, Liu Z, Tian Z, Liu B (2016) Imido-modified SiO2-supported Ti/Mg ziegler- Natta catalysts for ethylene polymerization and ethylene/1-hexene copolymerization. Polyolefins J 3: 103-117
  12. Shamiri A, Chakrabarti MH, Jahan S, Hussain MZ (2014) The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7: 5069-5108
  13. Natta G (1959) Kinetic studies of α-olefin polymerization. J Polym Sci 34: 21–48
  14. Claverie JP, Schaper F (2013) Ziegler-Natta catalysis: 50 years after the Nobel Prize. MRS Bull 38: 213–218
  15. Gázquez MJ, Bolívar JP, Garcia-Tenorio R, Vaca F (2014) A review of the production cycle of titanium dioxide pigment. Mater Sci Appl 5: 441-458
  16. Alpert MB, Sullivan WF (1956) Purification of titanium tetrachloride. US Pat 2,712,523
  17. Anderson WW, Rowe LW (1956) Method for preparing chlorination feed material. US Pat 2,770,529
  18. Armant DL, Cole SS, (1949) Smelting of titaniferous ores. J Metals 1: 909-913
  19. Banning LH, Hergert WF, Halter DE (1955) Electric smelting of alluvial ilmenite concentrates from Valley Co., Idaho US Bureau of Mines Rep., 5170: 1-18
  20. Barksdale J (1966) Titanium, its occurrence, chemistry and technology. Ronald Press, 2nd ed., New York, NY, 1-76
  21. Barnett CE (1959) Electrowinning of titanium. US Pat 2,908,619
  22. Becher RG (1963) Improved process for the beneficiation of titanium ores containing iron. Aust Pat 247110
  23. Becher RG, Canning RG, Goodheart BA, Uusna S (1965) A new process for upgrading ilmenite mineral sands. Proc Aust Min Metall 214: 21- 44
  24. Belyakova EP (1962) Processing of ilmenite concentrate to obtain titanium. Akad Nauk SSR Inst Met 5:289-294
  25. Bergholm A (1961) Chlorination of rutile. Trans Metall Soc AIME 221: 1121-127
  26. Campbell IE, Jaffee RI, Blocher HN, Gurland J, Gosner SW (1948) The preparation and properties of pure titanium. J Electrochem Soc 93: 271-285
  27. De Boer J, Fast JD (1926) Preparation of pure metals of titanium group by thermal decomposition of iodides. Z Anorg Allg Chem 153: 1-6
  28. De Boer J, Fast JD (1930) Preparation of pure metals of titanium group by thermal decomposition of iodides. Z Anorg Allg Chem 181: 181-189
  29. Dean RS, Long JR, Wartman FS, Hayes FT (1946) Ductile titanium – its fabrication and physical properties. Trans Metall Soc AIME 166: 369-389
  30. Dean RS, Silkes B (1946) Metallic titanium and its alloys. US Bureau Mines IC 7381: 21-39
  31. Doraiswamy LK, Bijawat HC, Kunte MV (1959) Chlorination of ilmenite in a fluidized bed. Chem Eng Prog 55: 80-88
  32. Dunn WE (1960) High temperature chlorination of titanium dioxide bearing minerals. Trans Mellat Soc AIME 218: 6-12
  33. Elger GW, Stickney WA (1971) Production of high purily synthetic rutile from a domestic ilmenite concentrate. US Bureau of Mines 37: 19-28
  34. Fast JD (1938) Crack-free forming of zirconium and titanium. Metall Wirtschaft 17: 459-462
  35. Fast JD (1939) Preparation of pure titanium iodides. Rec Tray Chim 58: 174-180
  36. Frey W (1957) Titanium dioxide pigment with high rutile content. US Pat 2, 779, 662
  37. Gaskin AJ, Ringwood AE (1959) Production of rutile from ilmenite and selected ores. Aust Pat 222, 517
  38. Gaskin AJ, Ringwood AE (1960) Production of rutile from ilmenite and selected ores. US Pat 2,954, 278
  39. Head RB (1951) Reduction of titanium tetrachloride. Aust Pat 209, 985
  40. Head RB (1960) The thermodynamic properties of the lower chlorides of titanium. Aust J Chem13: 332-340
  41. Head RB (1961) Electrolytic production of sintered titanium from titanium tetrachloride at a contact cathode. J Electrochem Soc 108: 806- 809
  42. Henn JJ, Barclay JA (1970) A review of proposed processes for making rutile substitute. US Bureau of Mines IC 8450: 27-37
  43. Hughes W, Arkless W (1965) Titanium ore beneficiation process. Brit Pat 992, 317
  44.  Jaffee LD (1949) Titanium. J Metals 1: 6-9
  45. Judd B, Palmer ER (1973) Production of titanium dioxide from ilmenite of the west coast, South Island, New Zealand. Proc Aust Inst Min Metal 247: 23-33
  46. Kelly KK, Mah AD (1959) Metallurgical thermochemistry of titanium. US Bureau of Mines Rep, 5490: 43-48
  47. Kroll W (1940) The production of ductile titanium. Trans Electrochem Soc 78: 35-47
  48. Kroll W (1940a) Methods for manufacturing titanium and alloys. US Pat 2, 205, 854
  49. Leone OQ, Knudsen H, Couch DJ (1967) High purity titanium electrowon from titanium tetrachloride. J Metals 19: 18-23
  50. Manocha R (1953) Chlorination of ilmenite. Trans Ind Inst Metals 7: 95-104
  51. Myhren AJ, Kelton EH, Johnson RL, Snow GE, Grady LD, Andrews EW, Reimert EW, Barnett CE (1968) The New Jersey zinc company electrolytic titanium pilot plant. J Metals 20: 38- 41
  52. Toshio N (1965) Titanium from slag in Japan. J Mater 17: 25-32
  53. Opie WR, Svanstrom KA (1959) Electrode position of titanium from fused chloride baths using titanium tetrachloride as feed materials. Trans Mellat Soc AIME 218: 219-225
  54. Opie WR, Svanstrom KA (1959) Electrolytic production of high purity titanium. US Pat 2,904,479
  55. Patel CC, Jere GV (1960) Chlorination of ilmenite. Trans Mellat Soc AIME 218: 219-225
  56. Rabie AA, Saada MY, Ezz SY (1968) Upgrading Egyptian ilmenite by partial chlorination. London, The Inst. of Min. Met., Adv Extra Metall. 516-538
  57. Rand MJ, Reimert LJ (1954) Electrolytic titanium from titanium tetrachloride. I. Operation of a reliable laboratory cell. II. Influence of impurities in titanium tetrachloride. J Electrochem Soc 111: 429-434
  58. Reimert LJ (1963) Electrolytic production of titanium in fused salt. US Pat 3, 082,159
  59. Roberson AH, Banning LH (1955) Preparation and chlorination of titaniferous slag from Idaho ilmenites. Trans Mellat Soc AIME 203: 1334- 1342
  60. Safiullin NSh, Belyaev EK (1966) Production of high quality titanium dioxide by alkaline decomposition of treated chromium containing ilmenite. Khim Prom UKz 3:5-8
  61. Safiullin NSh, Belyaev EK (1967) On the preparation of high quality titanium dioxide from chromium containing ilmenite using the method of alkali decomposition. Khim Prom UKz 4: 6-8
  62. Sankaran C, Misra RN, Bhatnagar PP (1968) Selective chlorination of iron from ilmenite with hydrochloric gas. In: Advances in extractive metallurgy, Inst Min Metall, London, 325-390
  63. Sehra JC, Snanamoorthy JB, Gadiyar HS, Roa ChS, Jena PK (1966) Chemical beneficiation of quilenilmenite by high temperature hydrochloric acid leaching. Trans Ind Inst Met 19: 114-115
  64. Stoddard CK, Wyatt JL (1953) Titanium metal. US Pat 2,663,634
  65. Stoddard CK, Wyatt JL (1955) Retort for reducing titanium tetrachloride with magnesium. US Pat 2,709,078
  66. Van Arkel A, De Boer J (1925) Darstellungvon reinem titanium-zirkonium-hafnium and thorium metall. Z Anorg Allg Chem 148: 345-350
  67. Van Arkel A, De Boer, J (1928) Process of precipitating metals on an incandescent body. US Pat 1,671,213
  68. Walker BV (1967) Titanium dioxide from New Zealand ores. J N Z Sci 10: 1-6
  69. Walsh RH, Hockin HW, Brandt DR, Dietz PL, Girardot PR (1960) Reduction of iron in ilmenite to metallic iron at less than slagging temperatures. Trans Mellat Soc AIME 218: 994-1003
  70. Moodley S (2011) A study of the chlorination behaviour of various titania feedstocks. MSc thesis, University of the Witwatersrand, Johannesburg
  71. Moodley S, Kale A, Bessinger D, Kucukkaragoz C, Erich RH (2012) Fluidization behaviour of various titania feedstocks. J South Afr Ins of Min and Metallurgy, 112, 467–471
  72. Kale A, Bisaka K (2010) Fluid bed chlorination pilot plant at mintek. The Southern African Institute of Mining and Metallurgy, Advanced Metals Initiative, Light Metals Conference
  73. Wendell E, Dunn JR (1979) High temperature chlorination of titanium bearing minerals: Part III. Metall Trans B 10: 293-294
  74.  Wendell E, Dunn JR (1979) High temperature chlorination of titanium bearing minerals: Part IV. Metall Trans B 10: 271-277
  75. Barin I, Schuler W (1980) On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon. Metall Trans B 11: 199-207
  76. Bonsack JP, Schneider FE (2001) Entrained-flow chlorination of titaniferous slag to produce titanium tetrachloride. Metall Mater Trans B 32: 389-393
  77. Den Hoed P, Nell J (2002) The carbochlorination of titaniferous oxides in a small scale fluidised bed, IFSA 2002, 133-143
  78. Burger H, Bessinger D, Moodley S (2009) Technical considerations and viability of higher titania slag feedstock for the chloride process, 7th Heavy mineral conference, 187- 194
  79. Minkler WW, Baroch EF (1981) The production of titanium, zirconium and hafnium. Metall Treatises, Metall Soc AIME, 171–182
  80. Stanaway KJ (1994) Overview of titanium dioxide feedstocks. Min Eng 46: 1367-1370
  81. AthaVale AS, Altekar VA. (1971) Kinetics of selective chlorination of ilmenite using hydrogen chloride in a fluidized bed. Ind Eng Chem Process Des Develop 10: 523-530
  82. Lakshmanan CM, Hoelscher HE Chennakesavan B (1965) The kinetics of ilmenite benefication in a fluidized chlorinator. Chem Eng Sci 20: 1107- 1113
  83. Van Deventer JSJ (1988) Kinetics of the selective chlorination of ilmenite. Thermochemica Acta 124: 205-215
  84. Matsuoka R, Okabe TH (2005) Iron removal from titanium ore using selective chlorination and effective utilization of chloride wastes. EPD Congress, TMS (The Minerals, Metals & Materials Society), 1-10
  85. Zheng H, Okabe TH (2010) Selective chlorination of titanium ore and production of titanium powder by perform reduction process (PRP), 1-6
  86. Kang J, Okabe TH (2013) Removal of iron from titanium ore through selective chlorination using magnesium chloride. Mater Trans 54: 1444-1453
  87. Kang J, Okabe TH (2014) Production of titanium dioxide directly from titanium ore through selective chlorination using titanium tetrachloride. Mater Trans 55: 591-598
  88. Kang J, Okabe TH (2013) Upgrading titanium ore through selective chlorination using calcium chloride. Metall Mater Trans B 44: 516–527
  89. Guo Y, He J, Jiang T, Liu S, Zheng F, Wang S (2014) Preparation of synthetic rutile from titanium slag. In: 5th International Symposium on high-temperature metallorganical processing, Schiesinger ME, Yuceio, Padilla R, Mackey PJ, Zhou G, Eds., Wiley, SanDiego, CA, USA
  90. Yang K, Peng J, Zhang L, Zhu H, Chen G, Zheng X, Tan X, Zhang S (2014) Research on microwave roasting of high titanium slag process. In: 5th International Symposium on high-temperature metallorganical processing, Schiesinger ME, Yucei O, Padilla R, Mackey PJ, Zhou G, Eds., Wiley, SanDiego, CA, USA
  91. Dmitriev AN, Petukhov RV, Vitkina GYu, Chesnokov YuA, Kornilkov SV, Pelevin AE (2016) The reduction processes of the titanium containing iron ores treatment. Defect and Diffusion Forum 369: 6-11
  92. Youn IJ, Park KY, (1989) Modeling of fluidized bed chlorination of rutile. Metall Trans B 20: 959-966
  93. Rhee KI, Sohn HY (1990) The selective chlorination of iron from ilmenite ore by CO-Cl2 mixtures. Part 1: Instrinsic kinetics. Metall Trans B 21: 321- 329
  94. Jena P, Broccchi EA, Gameiro DH (1998) Kinetics of the chlorination of TiO2 by Cl2 in the presence of graphite powder. Trans Instit Min Metall 107: 139- 145
  95. Morris, AJ, Jensen, RF (1976) Fluidized-bed chlorination rates of Australian rutile. Metall Trans B 7: 89-93
  96. Sohn HY, Zhou L, Cho K (1998) Intrinsic kinetics and mechanism of rutile chlorination by CO and Cl2 mixtures. Ind Eng Chem Res 37: 3800-3805
  97. Sohn HY, Zhou L (1998) The kinetics of carbochlorination of titania slag. Can J Chem Eng 76: 1078-1082
  98. Sohn HY, Zhou L (1999) The chlorination kinetics of beneficiated ilmenite particles by CO+Cl2 mixtures. Chem Eng J 72: 37– 42
  99. Le Roux JT (2001), Fluidized bed chlorination of titania slag. MSc thesis. University of Pretoria
  100. Nell J, den Hoed P (2003) Carbo-chlorination of rutile, titania slag and ilmenite in a bubbling fluidized bed reactor. Int Mineral Process Cong XXII, 1426–1433
  101. Niu LP, Ni PY, Zhang TA, Lv GZ, Zhou AP, Liang X, Men D (2014) Mechanism of fluidized chlorination reaction of Kenya natural rutile ore. Rare Met 33:485-492
  102. Maharajh S, Muller J, Zietsman JH (2015) Value-in-use model for chlorination of titania feedstocks, The Southern African Institute of Mining and Metallurgy, Pyrometallurgical Modelling 33-50
  103. Li B, Yuan ZF, Li WB, Xu C (2004) A new method for deoxidization and chlorination of refined ilmenite with high magnesia and calcia contents. China Particulology 2: 84-88
  104. Yuan ZF, Xu C, Zheng SH, Zhou JC (2003) Comprehensive utilization of titanium resources in Panzhihua. Modem Chem Ind 23: 1-4
  105. Perkins EC (1963) Fluidized bed chlorination of titaniferous slag and ores. US Bureau Mines 6317: 1-13
  106. Yang FL, Hlavacek V (2000) “Effective extraction of titanium from rutile by a low-temperature chloride process”. AIChE J 46: 355- 360
  107. Yang FL (2000) Recycling titanium from Ti-waste by a low-temperature extraction process. AIChE J 46: 2499-2503
  108. Luckos A, Mitchell D (2002) The design of a circulating fluidized-bed chlorinator at Mintek. In: IFSA 2002 Industrial Fluidization South Africa, Luckos A, den Hoed P, Eds, Johannesburg, South Africa, 147-160
  109. Tardos G, Mazzone D, Pfeffer R (1985) Destabilization of fluidized beds due to agglomeration Part I. Can J Chem Eng 63: 377- 383
  110. Cong X, Zhangfu Y, and Xiaoqiang W(2006) Preparation of TiCl4 with the titanium slag containing magnesia and calcia in a combined fluidized bed. Chinese J Chem Eng 14: 281-288
  111. Cong X, Zhangfu Y, and Xiaoqiang W, Fan J, Li J, Wang Z (2006) Production TiCi4 using combined fluidized bed by titanium slag containing high-level CaO and MgO. Studies Surf Sci Catal 159: 493-496
  112. Zhangfu Y , Xiaoqiang W, Cong X, Wenbing L, Mooson K (2006) A new process for comprehensive utilization of complex titania ore. Min Eng 19: 975–978
  113. Shao-feng X, Zhang-fu Y, Cong X, Liang X (2010) Composition of off-gas produced by combined fluidized bed chlorination for preparation of TiCl4. Trans Nonferrous Met Soc China 20: 128-134
  114. Zhang-fu Y, Yuan-qing Z, Liang X, Shao-feng X, Bing-sheng X (2013) Preparation of TiCl4 with multistage series combined fluidized bed. Trans Nonferrous Met Soc China 23: 283−288