Polymerization of sterically hindered a-olefins with single-site group 4 metal catalyst precursors

Document Type: Original research

Authors

1 Organometallics, Materials and Catalysis laboratories, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, F-35042 Rennes, France

2 Total Raffinage Chimie, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium

3 Total S.A., Corporate Science, Tour Michelet A, 24 Cours Michelet – La Défense 10, F-92069 Paris La Défense Cedex, France

Abstract

A variety of group 4 metal catalytic systems (C2-symmetric {EBTHI}-, {SBI}-type zirconocene complexes (C2-1–4); C1-symmetric (C1-5–8) and Cs-symmetric (Cs-9) {Cp/Flu}-type zirconocene complexes; Cp*2ZrCl2 (Cp* 2-10)), half-metallocene complexes (CpTiCl3, HM-11), constrained-geometry (CGC-12) titanium catalysts) and post-metallocene catalysts (Dow’s ortho-metallated amido-pyridino hafnium complex (PM-13)) have been screened in the polymerization of the sterically demanding 3-methylbut-1-ene (3MB1) and vinylcyclohexane (VCH). All systems proved to be sluggishly active under regular conditions (toluene, 20°C; MAO as cocatalyst) towards 3MB1, with productivities in the range 0–15 kg.mol–1.h–1. Higher productivities (up to 75 kg.mol–1.h–1) were obtained in the polymerization of VCH with C1-symmetric metallocene catalysts under the same conditions, while Cs-symmetric systems were found to be completely inactive. For both 3MB1 and VCH, under all conditions tested, the most productive catalyst appeared to be Dow’s post-metallocene system PM-13/MAO. Optimization of the polymerization conditions led to a significant enhancement of the productivities of this catalyst system towards both 3MB1 and VCH up to 390 and 760 kg.mol–1.h–1, respectively (Tpolym = 70°C). 13C NMR spectroscopy studies revealed that all isolated P(3MB1) and P(VCH) polymers were isotactic, regardless the nature/symmetry of the (pre)catalyst used. The nature of the chain-end groups in P(3MB1) is consistent with two different chaintermination mechanisms, namely b-H elimination/transfer-to-monomer for C2-1/MAO and chain-transfer to Me3Al for PM-13/MAO systems, respectively. For polymerization of VCH with PM-13/MAO at 70°C, b-H elimination / transfer-to-monomer appeared to be the main chain termination reaction.

Keywords

Main Subjects


  1. Vasile C (2000) Handbook of polyolefins, 2nd Edi­tion (Plastics Engineering). CRC Press, 1-1032
  2. Fink JK (2010) Handbook of engineering and specialty thermoplastics, Vol. 1, Polyolefins and styrenics, Wiley-Scrivener, 1-400
  3. Wei H, Hagihara H, Miyoshi T (2007) Mi­crostructure and thermal property of isotactic poly(3-methyl-1-butene) obtained using the C2- symmetrical zirconocene/MAO catalyst system. Macromolecules 40: 1763-1766
  4. Segal S, Yeori A, Shuster M, Rosenberg Y, Kol M (2008) Isospecific polymerization of vinylcyclo­hexane by zirconium complexes of salan ligands. Macromolecules 41: 1612−1617
  5. Asakura T, Nakayama N (1991) Carbon-13 nucle­ar magnetic resonance analysis of poly(3-methyl- 1-butene). Polym Commun 32 : 213-216
  6. Rishina LA, Galashina NM, Nedorezova PM, Klyamkina AN, Aladyshev AM, Tsvetkova VI, Kleiner VI (2006) Homo-and copolymerization of vinylcyclohexane with α-olefins in the pres­ence of heterogeneous and homogeneous cata­lytic systems. J Polym Sci Pol Chem 48: 18-25
  7. Borriello A, Busico V, Cipullo R, Chadwick JC, Sudmeijer O (1996) Polymerization of 3-meth­yl-1-butene promoted by metallocene catalysts. Macromol Rapid Commun 17: 589-597
  8. Ammendola P, Tancredi T, Zambelli A (1986) Isotactic polymerization of styrene and vinylcy­clohexane in the presence of carbon-13-enriched Ziegler-Natta catalyst: Regioselectivity and enan­tioselectivity of the insertion into metal-methyl bonds. Macromolecules 19: 307-310
  9. Endo K, Fujii K, Otsu T (1991) Steric effects of substituents on polymerization activity of branched 1-olefins with titanium trichloride-tri­ethylaluminum catalyst. J Polym Sci Pol Chem 29: 1991-1993
  10. Endo K, Otsu T (1992) Polymerization of vinyl­cyclohexane with Ziegler-Natta catalyst. J Polym Sci Pol Chem 30: 679−683
  11. Soga K, Nakatani H, Shiono T (1989) Polymer­ization of vinylcyclohexane with Ziegler-Natta catalyst. Macromolecules 22: 1499-1500
  12. Grisi F, Pragliola S, Costabile C, Longo P (2006) Polymerizations of vinyl-cyclohexane in the presence of C2, C2v, and Cs zirconocene-based catalysts. Polymer 47: 1930-1934
  13. Keaton RJ, Jarayatne KC, Henningsen DA, Koterwas LA, Sita LR (2001) Dramatic enhance­ment of activities for living Ziegler-Natta po­lymerizations mediated by "Exposed" zirconium acetamidinate initiators: The isospecific living polymerization of vinylcyclohexane. J Am Chem Soc 123: 6197-6198
  14. Tsurugi H, Ohnishi R, Kaneko H, Panda TK, Mashima K (2009) Controlled benzylation of α-diimine ligands bound to zirconium and haf­nium: An alternative method for preparing mono-and bis(amido)M(CH2Ph)n (n = 2, 3) complexes as catalyst precursors for isospecific polymeriza­tion of α-olefins. Organometallics 28: 680-687
  15. Gendler S, Groysman S, Goldschmidt Z, Shus­ter M, Kol M (2006) Polymerization of 4-meth­ylpentene and vinylcyclohexane by amine bis(phenolate) titanium and zirconium complex­es. J Polym Sci Pol Chem 44: 1136-1146
  16. Miyoshi T, Wei H, Hagihara H (2007) Mi­crostructure and thermal property of isotactic poly(3-methyl-1-butene) obtained using the C2- symmetrical zirconocene/MAO catalyst system. Macromolecules 40: 6789-6792
  17. Kaminsky W, Kulper K, Brintzinger HH, Wild FRWP (1985) Polymerisation von propen end buten mit einem chiralen zirconocen und meth­ylaluminoxan als cokatalysator. Angew Chem 97: 507-508
  18. Spaleck W, Kuber F, Winter A, Rohrmann J, Bachmann B, Antberg M, Dolle V, Paulus EF (1994) The influence of aromatic substituents on the polymerization behavior of bridged zircono­cene catalysts. Organometallics 13: 954-963
  19. Kirillov E, Marquet N, Razavi A, Belia V, Hampel F, Roisnel T, Gladysz JA, Carpentier JF (2010) New C1-symmetric Ph2C-bridged multisubstitut­ed ansa-zirconocenes for highly isospecific pro­pylene polymerization: Synthetic approach via activated fulvenes. Organometallics 29: 5073- 5082
  20. Razavi A, Peters L, Nafpliotis L (1997) Geomet­ric flexibility, ligand and transition metal elec­tronic effects on stereoselective polymerization of propylene in homogeneous catalysis. J Mol Catal A-Chem 115: 129-154
  21. Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Murphy V, Shoe­maker JAW, Turner H, Rosen RK, Stevens JC, Alfano F, Busico V, Cipullo R, Talarico G (2006) Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies. Angew Chem Int Ed 45: 3278-3283
  22. Kirillov E, Marquet N, Bader M, Razavi A, Be­lia V, Hampel F, Roisnel T, Gladysz JA, Carpen­tier JF (2011) Chiral-at-ansa-bridged Group 4 metallocene complexes {(R1R2C)-(3,6-tBu2Flu) (3-R3-5-Me-C5H2)}MCl2: Synthesis, structure, stereochemistry, and use in highly isoselective propylene polymerization. Organometallics 30: 263-272
  23. Bader M, Marquet N, Kirillov E, Roisnel T, Raza­vi A, Lhost O, Carpentier JF (2012) Old and new C1-symmetric Group 4 metallocenes {(R1R2C)- (R2'R3'R6'R7'-Flu)(3-R3-5-R4-C5H2)}ZrCl2: From highly isotactic polypropylenes to vinyl end-capped isotactic-enriched oligomers. Organome­tallics 32: 8375-8387
  24. Rodriguez AS, Kirillov E, Carpentier JF (2008) Group 3 and 4 single-site catalysts for stereospe­cific polymerization of styrene. Coord Chem Rev 252: 2115-2136
  25. Delferro M, Marks TJ (2011) Multinuclear olefin polymerization catalysts. Chem Rev 111: 2450- 2485
  26. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Catalytic production of olefin block copolymers via chain shuttling po­lymerization. Science 312: 714-719
  27. Theurkauff G, Roisnel T, Waassenaar J, Carpen­tier JF, Kirillov E (2014) iPP-sPP stereoblocks or blends ? studies on the synthesis of isotactic-syn­diotactic polypropylene using single C1-symmet­ric {Ph2C-(Flu)(3-Me3Si-Cp)}ZrR2 metallocene precatalyst. Macromol Chem Phys 215: 2035- 2047
  28. Kaminsky W, Kulper K, Niedoba S (1986) Olefin polymerization with Highly Active Soluble zirco­nium compounds using aluminoxane as cocata­lyst. Macromol Chem Macromol Symp 3: 377- 387
  29. Csok Z, Liguori D, Sessa I, Zannoni C, Zambelli A (2004) Stereochemical structure of polypro­pylene obtained in the presence of half-sandwich titanium complexes. Macromol Chem Phys 205: 1231-1237
  30. McKnight AL, Masood MA, Waymouth RM (1997) Selectivity in propylene polymerization with group 4 Cp-amido catalysts. Organometal­lics 16: 2879-2885
  31. Frazier KA, Froese RD, He Y, Klozin J, Theriault CN, Vosejkka PC, Zhou Z (2011) Pyridylamido hafnium and zirconium complexes: Synthesis, dynamic behavior, and ethylene/1-octene and propylene polymerization reactions. Organome­tallics 30: 3318-3329
  32. Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans: 1413-1418
  33. Busico V, Cipullo R, Pellechia R, Talarico G, Razavi A (2009) Hafnocenes and MAO: Be­ware of trimethylaluminum. Macromolecules 42: 1789-1791
  34. Theurkauff G, Bader M, Marquet N, Bondon A, Roisnel T, Guegan JP, Amar A, Boucekkine A, Carpentier JF, Kirillov E (2016) Discrete ionic complexes of highly isoselective zirconocenes. Solution dynamics, trimethylaluminum adducts, and implications in propylene polymerization. Organometallics 35: 258-276
  35. Babushkin DE, Brintzinger HH (2007) Modi­fication of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum-transformations of reactive cations studied by NMR spectroscopy. Chem Eur J 13: 5294-5299
  36. Zuccaccia C, Macchioni A, Busico V, Cipullo R, Talarico G, Alfano F, Boone HW, Frazier KA, Hustad PD, Stevens JC, Vosejpka PC, Abboud KA (2008) Intra- and intermolecular NMR stud­ies on the activation of arylcyclometallated haf­nium pyridyl-amido olefin polymerization prec­atalysts. J Am Chem Soc 130: 10354−10368
  37. Gao Y, Mouat AR, Motta A, Macchioni A, Zuccac­cia C, Delferro M, Marks TJ (2015) Pyridylamido Bi-hafnium olefin polymerization catalysis: Con­formationally supported Hf...Hf enchainment co­operativity. ACS Catal 5: 5272-5282
  38. Rocchigiani L, Busico V, Pastore A, Macchioni A (2016) Comparative NMR study on the reactions of Hf(IV) organometallic complexes with Al/Zn Alkyls. Organometallics 35: 1241-1250
  39. Froese RDJ, Hustad PD, Kuhlman RL, Wenzel TT (2007) Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: Li­gand modification by monomer. J Am Chem Soc 129: 7831-7840