Document Type : Original research
Authors
- Gabriel Theurkauff 1
- Katty Den Dauw 2
- Olivier Miserque 2
- Aurélien Vantomme 2
- Jean-Michel Brusson 3
- Jean-François Carpentier 1
- Evgeny Kirillov 1
1 Organometallics, Materials and Catalysis laboratories, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, F-35042 Rennes, France
2 Total Raffinage Chimie, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
3 Total S.A., Corporate Science, Tour Michelet A, 24 Cours Michelet – La Défense 10, F-92069 Paris La Défense Cedex, France
Abstract
A variety of group 4 metal catalytic systems (C2-symmetric {EBTHI}-, {SBI}-type zirconocene complexes (C2-1–4); C1-symmetric (C1-5–8) and Cs-symmetric (Cs-9) {Cp/Flu}-type zirconocene complexes; Cp*2ZrCl2 (Cp* 2-10)), half-metallocene complexes (CpTiCl3, HM-11), constrained-geometry (CGC-12) titanium catalysts) and post-metallocene catalysts (Dow’s ortho-metallated amido-pyridino hafnium complex (PM-13)) have been screened in the polymerization of the sterically demanding 3-methylbut-1-ene (3MB1) and vinylcyclohexane (VCH). All systems proved to be sluggishly active under regular conditions (toluene, 20°C; MAO as cocatalyst) towards 3MB1, with productivities in the range 0–15 kg.mol–1.h–1. Higher productivities (up to 75 kg.mol–1.h–1) were obtained in the polymerization of VCH with C1-symmetric metallocene catalysts under the same conditions, while Cs-symmetric systems were found to be completely inactive. For both 3MB1 and VCH, under all conditions tested, the most productive catalyst appeared to be Dow’s post-metallocene system PM-13/MAO. Optimization of the polymerization conditions led to a significant enhancement of the productivities of this catalyst system towards both 3MB1 and VCH up to 390 and 760 kg.mol–1.h–1, respectively (Tpolym = 70°C). 13C NMR spectroscopy studies revealed that all isolated P(3MB1) and P(VCH) polymers were isotactic, regardless the nature/symmetry of the (pre)catalyst used. The nature of the chain-end groups in P(3MB1) is consistent with two different chaintermination mechanisms, namely b-H elimination/transfer-to-monomer for C2-1/MAO and chain-transfer to Me3Al for PM-13/MAO systems, respectively. For polymerization of VCH with PM-13/MAO at 70°C, b-H elimination / transfer-to-monomer appeared to be the main chain termination reaction.
Keywords
Main Subjects
- Vasile C (2000) Handbook of polyolefins, 2nd Edition (Plastics Engineering). CRC Press, 1-1032
- Fink JK (2010) Handbook of engineering and specialty thermoplastics, Vol. 1, Polyolefins and styrenics, Wiley-Scrivener, 1-400
- Wei H, Hagihara H, Miyoshi T (2007) Microstructure and thermal property of isotactic poly(3-methyl-1-butene) obtained using the C2- symmetrical zirconocene/MAO catalyst system. Macromolecules 40: 1763-1766
- Segal S, Yeori A, Shuster M, Rosenberg Y, Kol M (2008) Isospecific polymerization of vinylcyclohexane by zirconium complexes of salan ligands. Macromolecules 41: 1612−1617
- Asakura T, Nakayama N (1991) Carbon-13 nuclear magnetic resonance analysis of poly(3-methyl- 1-butene). Polym Commun 32 : 213-216
- Rishina LA, Galashina NM, Nedorezova PM, Klyamkina AN, Aladyshev AM, Tsvetkova VI, Kleiner VI (2006) Homo-and copolymerization of vinylcyclohexane with α-olefins in the presence of heterogeneous and homogeneous catalytic systems. J Polym Sci Pol Chem 48: 18-25
- Borriello A, Busico V, Cipullo R, Chadwick JC, Sudmeijer O (1996) Polymerization of 3-methyl-1-butene promoted by metallocene catalysts. Macromol Rapid Commun 17: 589-597
- Ammendola P, Tancredi T, Zambelli A (1986) Isotactic polymerization of styrene and vinylcyclohexane in the presence of carbon-13-enriched Ziegler-Natta catalyst: Regioselectivity and enantioselectivity of the insertion into metal-methyl bonds. Macromolecules 19: 307-310
- Endo K, Fujii K, Otsu T (1991) Steric effects of substituents on polymerization activity of branched 1-olefins with titanium trichloride-triethylaluminum catalyst. J Polym Sci Pol Chem 29: 1991-1993
- Endo K, Otsu T (1992) Polymerization of vinylcyclohexane with Ziegler-Natta catalyst. J Polym Sci Pol Chem 30: 679−683
- Soga K, Nakatani H, Shiono T (1989) Polymerization of vinylcyclohexane with Ziegler-Natta catalyst. Macromolecules 22: 1499-1500
- Grisi F, Pragliola S, Costabile C, Longo P (2006) Polymerizations of vinyl-cyclohexane in the presence of C2, C2v, and Cs zirconocene-based catalysts. Polymer 47: 1930-1934
- Keaton RJ, Jarayatne KC, Henningsen DA, Koterwas LA, Sita LR (2001) Dramatic enhancement of activities for living Ziegler-Natta polymerizations mediated by "Exposed" zirconium acetamidinate initiators: The isospecific living polymerization of vinylcyclohexane. J Am Chem Soc 123: 6197-6198
- Tsurugi H, Ohnishi R, Kaneko H, Panda TK, Mashima K (2009) Controlled benzylation of α-diimine ligands bound to zirconium and hafnium: An alternative method for preparing mono-and bis(amido)M(CH2Ph)n (n = 2, 3) complexes as catalyst precursors for isospecific polymerization of α-olefins. Organometallics 28: 680-687
- Gendler S, Groysman S, Goldschmidt Z, Shuster M, Kol M (2006) Polymerization of 4-methylpentene and vinylcyclohexane by amine bis(phenolate) titanium and zirconium complexes. J Polym Sci Pol Chem 44: 1136-1146
- Miyoshi T, Wei H, Hagihara H (2007) Microstructure and thermal property of isotactic poly(3-methyl-1-butene) obtained using the C2- symmetrical zirconocene/MAO catalyst system. Macromolecules 40: 6789-6792
- Kaminsky W, Kulper K, Brintzinger HH, Wild FRWP (1985) Polymerisation von propen end buten mit einem chiralen zirconocen und methylaluminoxan als cokatalysator. Angew Chem 97: 507-508
- Spaleck W, Kuber F, Winter A, Rohrmann J, Bachmann B, Antberg M, Dolle V, Paulus EF (1994) The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts. Organometallics 13: 954-963
- Kirillov E, Marquet N, Razavi A, Belia V, Hampel F, Roisnel T, Gladysz JA, Carpentier JF (2010) New C1-symmetric Ph2C-bridged multisubstituted ansa-zirconocenes for highly isospecific propylene polymerization: Synthetic approach via activated fulvenes. Organometallics 29: 5073- 5082
- Razavi A, Peters L, Nafpliotis L (1997) Geometric flexibility, ligand and transition metal electronic effects on stereoselective polymerization of propylene in homogeneous catalysis. J Mol Catal A-Chem 115: 129-154
- Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Murphy V, Shoemaker JAW, Turner H, Rosen RK, Stevens JC, Alfano F, Busico V, Cipullo R, Talarico G (2006) Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies. Angew Chem Int Ed 45: 3278-3283
- Kirillov E, Marquet N, Bader M, Razavi A, Belia V, Hampel F, Roisnel T, Gladysz JA, Carpentier JF (2011) Chiral-at-ansa-bridged Group 4 metallocene complexes {(R1R2C)-(3,6-tBu2Flu) (3-R3-5-Me-C5H2)}MCl2: Synthesis, structure, stereochemistry, and use in highly isoselective propylene polymerization. Organometallics 30: 263-272
- Bader M, Marquet N, Kirillov E, Roisnel T, Razavi A, Lhost O, Carpentier JF (2012) Old and new C1-symmetric Group 4 metallocenes {(R1R2C)- (R2'R3'R6'R7'-Flu)(3-R3-5-R4-C5H2)}ZrCl2: From highly isotactic polypropylenes to vinyl end-capped isotactic-enriched oligomers. Organometallics 32: 8375-8387
- Rodriguez AS, Kirillov E, Carpentier JF (2008) Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. Coord Chem Rev 252: 2115-2136
- Delferro M, Marks TJ (2011) Multinuclear olefin polymerization catalysts. Chem Rev 111: 2450- 2485
- Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312: 714-719
- Theurkauff G, Roisnel T, Waassenaar J, Carpentier JF, Kirillov E (2014) iPP-sPP stereoblocks or blends ? studies on the synthesis of isotactic-syndiotactic polypropylene using single C1-symmetric {Ph2C-(Flu)(3-Me3Si-Cp)}ZrR2 metallocene precatalyst. Macromol Chem Phys 215: 2035- 2047
- Kaminsky W, Kulper K, Niedoba S (1986) Olefin polymerization with Highly Active Soluble zirconium compounds using aluminoxane as cocatalyst. Macromol Chem Macromol Symp 3: 377- 387
- Csok Z, Liguori D, Sessa I, Zannoni C, Zambelli A (2004) Stereochemical structure of polypropylene obtained in the presence of half-sandwich titanium complexes. Macromol Chem Phys 205: 1231-1237
- McKnight AL, Masood MA, Waymouth RM (1997) Selectivity in propylene polymerization with group 4 Cp-amido catalysts. Organometallics 16: 2879-2885
- Frazier KA, Froese RD, He Y, Klozin J, Theriault CN, Vosejkka PC, Zhou Z (2011) Pyridylamido hafnium and zirconium complexes: Synthesis, dynamic behavior, and ethylene/1-octene and propylene polymerization reactions. Organometallics 30: 3318-3329
- Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans: 1413-1418
- Busico V, Cipullo R, Pellechia R, Talarico G, Razavi A (2009) Hafnocenes and MAO: Beware of trimethylaluminum. Macromolecules 42: 1789-1791
- Theurkauff G, Bader M, Marquet N, Bondon A, Roisnel T, Guegan JP, Amar A, Boucekkine A, Carpentier JF, Kirillov E (2016) Discrete ionic complexes of highly isoselective zirconocenes. Solution dynamics, trimethylaluminum adducts, and implications in propylene polymerization. Organometallics 35: 258-276
- Babushkin DE, Brintzinger HH (2007) Modification of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum-transformations of reactive cations studied by NMR spectroscopy. Chem Eur J 13: 5294-5299
- Zuccaccia C, Macchioni A, Busico V, Cipullo R, Talarico G, Alfano F, Boone HW, Frazier KA, Hustad PD, Stevens JC, Vosejpka PC, Abboud KA (2008) Intra- and intermolecular NMR studies on the activation of arylcyclometallated hafnium pyridyl-amido olefin polymerization precatalysts. J Am Chem Soc 130: 10354−10368
- Gao Y, Mouat AR, Motta A, Macchioni A, Zuccaccia C, Delferro M, Marks TJ (2015) Pyridylamido Bi-hafnium olefin polymerization catalysis: Conformationally supported Hf...Hf enchainment cooperativity. ACS Catal 5: 5272-5282
- Rocchigiani L, Busico V, Pastore A, Macchioni A (2016) Comparative NMR study on the reactions of Hf(IV) organometallic complexes with Al/Zn Alkyls. Organometallics 35: 1241-1250
- Froese RDJ, Hustad PD, Kuhlman RL, Wenzel TT (2007) Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: Ligand modification by monomer. J Am Chem Soc 129: 7831-7840