Polyolefin degradation
Abbas Kebritchi; Mehdi Nekoomanesh; Fereidoun Mohammadi; Hossein Khonakdar; Udo Wagenknecht
Abstract
In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fractionated to different fractions with homogenous hexyl branch (HB) content by preparative ...
Read More
In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fractionated to different fractions with homogenous hexyl branch (HB) content by preparative temperature rising elution fractionation (P-TREF) method. The P-TREF fractions were thermally analyzed via differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and evolved gas analysis (EGA). The P-TREF profile showed a short chain branch distribution (SCBD) of around 1.24. A linear relationship between P-TREF elution temperature (ET) and methylene sequence length (MSL) was presented. The DSC curves exhibited a monolithically increase in melting temperature (Tm) as well as crystallization temperature (Tc) by decreasing short chain branch (SCB) content. The calculated values of lamellae thickness suggested a linear function of SCB content and Tm. The TGA studies of P-TREF fractions depicted a two-stage thermal degradation behavior: pre-degradation and main degradation stages. Tmax for both pre-degradation and main degradation stages was increased for fractions with less hexyl branch content. As an interesting point the pre-degradation stage was found more intensified for more linear fractions. The concentration of main products was found to be affected by the content of hexyl branches using Py-GC-MS.