Polyolefin degradation
Marzieh Alidadi-Shamsabadi; Shirin Shokoohi; Mahnaz Shahzamani; Homa Abbasian-Peykani
Abstract
In this work, the photo-aging behavior of high impact polystyrene (HIPS), polystyrene/ethylene propylene diene monomer (PS/EPDM) binary blends, and compatibilized polystyrene/ethylene propylene diene monomer/ polyamide 6 (PS/EPDM/PA6) ternary blends was studied and compared together. Photo-degradation ...
Read More
In this work, the photo-aging behavior of high impact polystyrene (HIPS), polystyrene/ethylene propylene diene monomer (PS/EPDM) binary blends, and compatibilized polystyrene/ethylene propylene diene monomer/ polyamide 6 (PS/EPDM/PA6) ternary blends was studied and compared together. Photo-degradation of polymer blends faces considerable challenges, because a polymer blend is a compound of multiple components with particular interactions and its components may function as degrading or stabilizing agents. Photo-aging generally can cause changes in the color and mechanical properties of polymer compounds. Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) was conducted to study the chemical interactions between components in the prepared samples. The morphological structure of blends was studied by using scanning electron microscopy (SEM). The impact and tensile strength of the samples were measured and compared after exposure to UV radiation. To study the changes in the appearance, the yellowness index values of the samples were followed at different periods of exposure to UV irradiation. The post-radiation results showed similar mechanical performance of ternary and binary blends with the retention of mechanical properties close to each other. The impact strength and elongation-at-break for the HIPS sample were greatly reduced compared to the blends, showing their retention by 8.46 and 7.86%, respectively. The ultimate tensile strength retention in each sample is between 70 and 82% and there is no significant difference between them. The final yellowness index of HIPS was measured to be 1.6 and 1.2 times higher than that of the binary and ternary blends, respectively.
Polymer processing
Ali Mahmoudi Yayshahri; Seyed Jamaleddin Peighambardoust; Abolfazl Shenavar
Abstract
High impact polystyrene (HIPS)/corn starch blends were prepared in presence of glycerol as a plasticizer via melt extrusion process by a twin-screw extruder. The novelty of this work is first, because of the use of pre-gelatinized corn starch as modified one and second, the procedure of making blends ...
Read More
High impact polystyrene (HIPS)/corn starch blends were prepared in presence of glycerol as a plasticizer via melt extrusion process by a twin-screw extruder. The novelty of this work is first, because of the use of pre-gelatinized corn starch as modified one and second, the procedure of making blends by extruder which makes it ease of access and also industrially possible. The blends were then characterized by scanning electron microscopy (SEM) to visualize morphology of blends and dispersion of starch in HIPS matrix, soil burial test (SBT) to investigate of blend biodegradability by measuring weight loss of samples, Izod impact strength test to evaluate of impact properties, melt flow index (MFI), thermo-gravimetric analysis (TGA) and Vicat softening point (VSP) tests to evaluate their thermal properties of prepared blend samples. Results indicated that these properties were affected by the amount of starch and glycerol used for preparation of blends in a way that addition of starch and glycerol led to a faster degradation rate especially in first two weeks, more decomposition stages through TGA, decrease in values of Izod impact strength and VSP. Measurements also showed that higher amount of starch led to decrease in the value of melt flow rate (MFR), although it was increased by addition of glycerol.
Polyolefin degradation
Zaher Tamri; Ali Vaziri Yazdi; Mehdi Nekoomanesh Haghighi; Mehrdad Seifali Abbas-Abadi; Amir Heidarinasab
Abstract
Pyrolysis of high impact polystyrene (HIPS) waste has been investigated under different process parameters, such as temperature, heating rate and types of zeolitic catalysts to produce valuable liquid products. Liquid, gas and coke as products of pyrolysis and aromatic, naphthene, olefin and paraffin ...
Read More
Pyrolysis of high impact polystyrene (HIPS) waste has been investigated under different process parameters, such as temperature, heating rate and types of zeolitic catalysts to produce valuable liquid products. Liquid, gas and coke as products of pyrolysis and aromatic, naphthene, olefin and paraffin as liquid components were obtained and their molecular weight distributions were studied with changing the process parameters in a stirred reactor. Aromatic-rich hydrocarbons within the gasoline range were the main pyrolysis products. Type of zeolitic catalysts, temperature and heating rate had significant effects on the products quality and quantity. Non-isothermal mass losses of high impact polystyrene were measured using a thermo-gravimetric analyzer (TGA) at heating rates of 5, 15, 30, 45 and 90°C min-1 until the furnace wall temperature reached 600°C. The DTG (differential thermal gravimetric) curves showed that heating rate had no obvious effect on the degradation trends in the studied range, and by increasing heating rate, the activation energies were decreased obviously from 222.5 to183.6 kJ mol-1.