Catalysis
Mohammad Javad Sharifi; Alireza Fazlali; Seyed Hamed Mahdaviani; Davood soudbar
Abstract
The performance of the catalyst system [chromium(III)/pyrrole/co-catalyst/halide] on the trimerization of ethylene has been studied using the combined experimental and response surface method (RSM). The chromium(III) tris(2-ethylhexanoate) was synthesized and characterized by FTIR, 1HNMR and 13CNMR, ...
Read More
The performance of the catalyst system [chromium(III)/pyrrole/co-catalyst/halide] on the trimerization of ethylene has been studied using the combined experimental and response surface method (RSM). The chromium(III) tris(2-ethylhexanoate) was synthesized and characterized by FTIR, 1HNMR and 13CNMR, to study chemical properties and identify molecular structures. The effect of four variables Al/Cr molar ratio, halide/Cr molar ratio, reaction temperature and catalyst dosage have been considered on catalyst activity, 1-hexene selectivity and polymer content. The central composite design (CCD) model with three main parameters in three response levels for each factor was applied to analyze the effects of the parameters. The comparative studies showed that carbon-tetra-chloride (CCl4) and tri-n-octyl-aluminum (TNOA) were the best candidates for this catalyst system, demonstrating high selectivity of 1-hexene formation, higher catalytic activity and lower polymer content. Based on the RSM results, the best trimerization condition for ethylene at 25 bar and 91.2°C was obtained at the catalytic system [Cr(2-EH)3/2,5-DMP/CCl4/TNOA] molar ratio of 1:6:10.8:201.5, which showed the activity of 105328 (g 1-C6/(g Cr.hr)), 99.21% selectivity for 1-hexene and no polymer was formed. The predicted process parameters were also verified by actual experiments at the optimized conditions.
Mohamad Hafizi Bin Zakria; Mohd Ghazali Mohd Nawawi; Mohd Rizal Abdul Rahman
Abstract
The study was conducted in the actual world-scale olefin plant with a focus on measuring the impact of identified controlled variables at the steam cracker furnace towards the propylene yield. Surface response analysis was conducted in the Minitab software version 20 using the historical data after the ...
Read More
The study was conducted in the actual world-scale olefin plant with a focus on measuring the impact of identified controlled variables at the steam cracker furnace towards the propylene yield. Surface response analysis was conducted in the Minitab software version 20 using the historical data after the clearance of both the outliers and residuals to ensure the analysis was conducted as normal data. Surface response analysis is a robust mathematical and statistical approach that is having a good potential to be systematically utilized in the actual large-scale olefin plant as an alternative to the expensive olefin simulation software for process monitoring. The analysis was conducted to forecast the maximum propylene yield in the studied plant with careful consideration to select only significant variables, represented by a variance inflation factor (VIF) <10 and p-value <0.05 in the analysis of variance (ANOVA) table. The final model successfully concluded that propylene yield in the studied plant was contributed by the factors of 0.00496, 0.00204, and -3.96 of hearth burner flow, dilution steam flow, and naphtha feed flow respectively. The response optimizer also suggested that the propylene yield from naphtha pyrolysis cracking in the studied plant could be maximized at 11.47% with the control setting at 10,004.36 kg/hr of hearth burner flow, 40,960 kg/hr of dilution steam flow, and 63.50 t/hr of naphtha feed flow.
Polyolefins Functionalization
Mohammad Shahbazi; Yousef Jahani
Abstract
In this work, the grafting of maleic anhydride onto two types of linear low density polyethylene with hexene-1 comonomer (LLDPE-H1) and butene-1 comonomer (LLDPE-B1), in the presence of styrene monomer (St) and dicumyl peroxide initiator (DCP) has been studied. The combined influences of MAH, St and ...
Read More
In this work, the grafting of maleic anhydride onto two types of linear low density polyethylene with hexene-1 comonomer (LLDPE-H1) and butene-1 comonomer (LLDPE-B1), in the presence of styrene monomer (St) and dicumyl peroxide initiator (DCP) has been studied. The combined influences of MAH, St and DCP on the grafting efficiency via a melt reactive mixing process have been investigated using response surface methodology and the central cubic design has been employed for experimental design and data analysis. IR spectroscopy, contact angle measurements and adhesion test have been used to evaluate the extent of grafting reaction. The results showed that LLDPE-H1 with a 2.2% maximum grafting content showed more grafting content than the LLDPE-B1 (1.86%). This effect could be attributed to the type of comonomer in LLDPE-H1 which made it more prone to chain scission than LLDPE-B1, and a higher level of grafting was achieved. The gel content measurement showed that lower cross-linked structure was formed during the grafting process in the LLDP-H1 than that in the LLDPE-B1. The optimum conditions of maximum grafting and minimum gel content were statically investigated. The optimum percentage of grafting for LLDPE-H1 was 1.82% and it was 1.74% for LLDPE-B1, with the minimum gel content of 6.5% and 9%, respectively. It was found that the amount of grafted percentage was sensitive to the concentrations of the MAH, DCP, and St, while the extent of the gel content was more sensitive to the percentage of DCP.
Polymeric foams
Hossein Hazrati; Nader Jahanbakhshi; Mohammad Rostamizadeh
Abstract
In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by thermally-induced phase separation (TIPS) method. A mixture of dibutyl phthalate ...
Read More
In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by thermally-induced phase separation (TIPS) method. A mixture of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) was used as diluent. The effect of polymer composition and quenching bath temperature on the morphology and performance of the fabricated microporous membranes was investigated by using RSM. Analysis of variance (ANOVA) was used to determine which variables and interactions between variables had a significant effect on our responses. The ANOVA revealed that the bath temperature was the most significant variable associated with porosity and pure water flux responses and the polymer concentration was the most significant variable associated with tensile response. The obtained results also showed that with increasing the polymer concentration and decreasing the quenching bath temperature, the membrane porosity and pure water flux decreased, whereas the membrane tensile increased. The regression equations were reasonably validated and used to predict and optimize the performance of PP-g-MA membranes within the limits of the variables. Finally, the maximum responses (flux of 115.6 L/m2h, porosity of 62% and tensile of 1.6 MPa) were obtained under the following conditions: polymer concentration of 28.5 wt% and temperature of 329 K. Further, comparison of laboratory-made and commercial membranes in a membrane bioreactor (MBR) system showed that the rate of membrane fouling was decreased by 4.2 times.