Reaction engineering
Marzieh Nouri; Mahmoud Parvazinia; Hassan Arabi; Mohsen Najafi
Abstract
A two-dimensional (2D) single particle model for the copolymerization of propylene-ethylene with heterogeneous Ziegler-Natta catalyst is developed. The model accounts for the effects of the initial shape of the catalyst and carck/ pore patterns on the copolymer composition, polymerization rate and the ...
Read More
A two-dimensional (2D) single particle model for the copolymerization of propylene-ethylene with heterogeneous Ziegler-Natta catalyst is developed. The model accounts for the effects of the initial shape of the catalyst and carck/ pore patterns on the copolymer composition, polymerization rate and the average molecular weight properties. The spherical and oblate ellipsoidal shapes of catalyst particle and four different pattern distributions of cracks and pores in a growing particle are studied in this simulation. It is assumed that the diffusion coefficient of monomers in the cracks/pores is 10 times higher than the compact zone of the particle.In other word, the cracks are distinguished from parts with higher monomer diffusion coefficient.The dynamic 2D monomer diffusion-reaction equation is solved together with a two-site catalyst kinetic mechanism using the finite element method. Simulation results indicate that the initial shape of catalyst changes the average copolymer composition only in the early stage of polymerization, but the crack/pore patterns in the growing particle have a strong impact on the copolymer composition in the polymer particles due to the change ofmass transfer limitations.
Reaction engineering
Mohsen Najafi; Mahmoud Parvazinia; Mir Hamid Reza Ghoreishy
Abstract
A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed ...
Read More
A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The initial catalyst active sites distribution was assumed to be uniform, while the monomer diffusion coefficient was considered to be different inside the fragments and cracks. In other words, the cracks were distinguished from fragments with higher monomer diffusion coefficient. To model the particle temperature a lumped heat transfer model was used. The fragmentation pattern was considered to remain unchanged during the polymerization. A Galerkin finite element method was used to solve the resulting two-dimensional (2-D) moving boundary value, diffusion-reaction problem. A two-dimensional polymeric flow model (PFM) was implemented on the finite element meshes. The simulation results showed that the fragmentation pattern had effects on the molecular properties, reaction rate and the particle temperature at early stages of polymerization.