Polymeric foams
Saeed Karimzadeh; Taher Azdast; Rezgar Hasanzadeh; Milad Moradian; Hamidreza Akrami
Abstract
Rotational molding is a process used to produce seamless, one-piece, and hollow polymeric parts. Foam rotational molding has recently become an increasingly important process in the foam industry. However, foam rotational molding is still a challenging process to fabricate polymeric foams. The focus ...
Read More
Rotational molding is a process used to produce seamless, one-piece, and hollow polymeric parts. Foam rotational molding has recently become an increasingly important process in the foam industry. However, foam rotational molding is still a challenging process to fabricate polymeric foams. The focus of this manuscript was to assess the effect of material parameters on the foam properties of samples produced by rotational molding. Rotational molding experiments were performed on a laboratory-scale two-axis rotational machine, designed and manufactured by the authors. The effects of microtalc as nucleating agent, nanoclay as reinforcing agent, and their synergetic effect were investigated on the cell density, cell size, and expansion ratio of hybrid microtalc/nanoclay polyethylene nanocomposites. The cell density was improved by 96% and 89% by addition of 1 wt% of microtalc and nanoclay, respectively, compared to pure polyethylene foams. The cell size was reduced by 20% and 17.5% in 1 wt% of microtalc and nanoclay, respectively. However, the synergetic effect of using both microtalc and nanoclay at 1 wt% was more significant compared to their individual effects. The cell density was enhanced by 313% and the cell size was decreased by 35% compared to pure samples.
Catalysis
Alikhani Ali; Shokoufeh Hakim; Mehdi Nekoomanesh
Abstract
This study presents methods for treating a kind of nanoclay and investigates the effects of methylaluminoxane (MAO) exposure time and or dodecylamine (DDA) reflux time on in-situ polymerization of ethylene in the presence of nanoclay and examines the morphology and properties of the prepared polyethylene/clay ...
Read More
This study presents methods for treating a kind of nanoclay and investigates the effects of methylaluminoxane (MAO) exposure time and or dodecylamine (DDA) reflux time on in-situ polymerization of ethylene in the presence of nanoclay and examines the morphology and properties of the prepared polyethylene/clay nanocomposites. The results revealed that by increasing MAO exposure time productivity decreased. Modification of nanoclay by NH3/MAO led to formation of exfoliated structures. In treatment with NH3/DDA, the change in reflux time resulted in different structures. SEM demonstrated that the morphology of the nanocomposites strongly depended on the modification method and treatment time. Dynamic mechanical analysis indicated that the elastic modulus of the nanocomposites increased by increasing MAO exposure time. The nanocomposites treated with different MAO exposure times showed similar thermal degradation behavior. The nanocomposite modified under the condition of 24 h DDA reflux time indicated the lowest thermal decomposition temperature due to poor dispersion of nanoclay in the synthesized nanocomposite. The nanocomposites modified by NH3/MAO had higher degree of crystallinity compared to those modified by NH3/DDA, which could be attributed to the difference in dispersion level of the modified clays. A relationship between the rheological properties, weight fraction and dispersion of modified nanoclay was observed. The findings showed that the modification condition had a significant influence on the morphology and properties of the synthesized nanocomposites.