Olefin polymerization and copolymerization
Yingying Mi; Zaixing Yang; Fei Zhou; Xuelian He
Abstract
A copolymerization reaction was carried out by adding different contents of 5-ethylidene-2-norbomene or cyclopentene to dicyclopentadiene (DCPD) using an optimized polymerization process. The effects of different amounts of the comonomers on the conversion, mechanical properties and thermal stability ...
Read More
A copolymerization reaction was carried out by adding different contents of 5-ethylidene-2-norbomene or cyclopentene to dicyclopentadiene (DCPD) using an optimized polymerization process. The effects of different amounts of the comonomers on the conversion, mechanical properties and thermal stability of the polymer products were investigated and compared. The results showed that the addition of 5-ethylidene-2-norbomene accelerated the reaction rate and had little effect on the overall conversion rate of the reaction, while the addition of cyclopentene decreased the reaction rate and conversion rate. The tensile modulus, tensile strength, flexural modulus and flexural strength of the copolymer showed a trend of increasing and then decreasing with the increase of the comonomers content, reaching a peak at 5wt% of 5-ethylidene-2-norbomene or 3wt% of cyclopentene. At this peak condition, its impact strength could be improved by 50% compared to DCPD homopolymer. Below this peak condition, the Tg and thermal stability of the copolymer did not change significantly.
Zehan Zhang; Zaixing Yang; Fei Zhou; Xuelian He
Abstract
In this paper, the polymerization process of polydicyclopentadiene (PDCPD) obtained by using dicyclopentadiene (DCPD) and the 2nd generation Grubbs’ catalyst is optimized. The curing reaction kinetics was studied by differential scanning calorimetry (DSC), and the solidification reaction process ...
Read More
In this paper, the polymerization process of polydicyclopentadiene (PDCPD) obtained by using dicyclopentadiene (DCPD) and the 2nd generation Grubbs’ catalyst is optimized. The curing reaction kinetics was studied by differential scanning calorimetry (DSC), and the solidification reaction process was obtained. The effects of different ratios of monomer to catalyst on the product performance were investigated. In addition, the current common modification methods of PDCPD have been summarized and improved. The results showed that with the increase of the ratio of monomer to the catalyst, the tensile strength, tensile modulus, bending strength and bending modulus of PDCPD all showed a downward trend, and the impact strength showed an upward trend. When nDCPD: nCat =10000:1, the comprehensive mechanical properties of PDCPD reached the best. The bending modulus, tensile strength and impact strength of PDCPD achieved 2100 MPa, 52.4 MPa and 30 kJ/m2, respectively. The glass transition temperature (Tg) of PDCPD also showed a decreasing trend with the increase of the ratio of monomer to the catalyst, at this ratio, the Tg of the polymer reached 147.6°C. The catalyst concentration had a large effect on the product performance.