Polymeric foams
Saeed Karimzadeh; Taher Azdast; Rezgar Hasanzadeh; Milad Moradian; Hamidreza Akrami
Abstract
Rotational molding is a process used to produce seamless, one-piece, and hollow polymeric parts. Foam rotational molding has recently become an increasingly important process in the foam industry. However, foam rotational molding is still a challenging process to fabricate polymeric foams. The focus ...
Read More
Rotational molding is a process used to produce seamless, one-piece, and hollow polymeric parts. Foam rotational molding has recently become an increasingly important process in the foam industry. However, foam rotational molding is still a challenging process to fabricate polymeric foams. The focus of this manuscript was to assess the effect of material parameters on the foam properties of samples produced by rotational molding. Rotational molding experiments were performed on a laboratory-scale two-axis rotational machine, designed and manufactured by the authors. The effects of microtalc as nucleating agent, nanoclay as reinforcing agent, and their synergetic effect were investigated on the cell density, cell size, and expansion ratio of hybrid microtalc/nanoclay polyethylene nanocomposites. The cell density was improved by 96% and 89% by addition of 1 wt% of microtalc and nanoclay, respectively, compared to pure polyethylene foams. The cell size was reduced by 20% and 17.5% in 1 wt% of microtalc and nanoclay, respectively. However, the synergetic effect of using both microtalc and nanoclay at 1 wt% was more significant compared to their individual effects. The cell density was enhanced by 313% and the cell size was decreased by 35% compared to pure samples.
Polymer processing
Milad Moradian; Taher Azdast; Ali Doniavi
Abstract
Polyolefins have been widely used in the electrical insulation and cable industry in recent years. One of the main usages of these materials is dielectric insulation in coaxial cables. Low attenuation and high signal transmission speed are among the desired features in coaxial cables. The role of polyethylene ...
Read More
Polyolefins have been widely used in the electrical insulation and cable industry in recent years. One of the main usages of these materials is dielectric insulation in coaxial cables. Low attenuation and high signal transmission speed are among the desired features in coaxial cables. The role of polyethylene foam on signal transmission speed in the coaxial cables is the main focus of this study. In the present study, the velocity factor of coaxial samples with different dielectric structures is investigated in both theoretical and experimental approaches. In theoretical formulation, only the void fraction of foam is taken into consideration and other foam properties such as cell density, cell size, and foam structure are neglected. This is the reason for the difference observed between theoretical and experimental results. In theoretical results, a linear increase in the velocity factor is witnessed with the increase of the void fraction while in experimental results there are some exceptions. The foaming degree of the samples was reached 63% causing a 37.7% decrease in theoretical relative permittivity and consequently a 26.8% increase in theoretical velocity factor. On the other hand, up to 36% increase is observed in the experimentally measured velocity factor of foamed dielectric samples compared to the samples with solid polyethylene dielectric.
Rezgar Hasanzadeh; Taher Azdast; Ali Doniavi; Richard Eungkee Lee
Abstract
The loss of energy especially in industrial and residential buildings is one of the main reasons of increased energy consumption. Improving the thermal insulation properties of materials is a fundamental method for reducing the energy losses. Polymeric foams are introduced as materials with excellent ...
Read More
The loss of energy especially in industrial and residential buildings is one of the main reasons of increased energy consumption. Improving the thermal insulation properties of materials is a fundamental method for reducing the energy losses. Polymeric foams are introduced as materials with excellent thermal insulation properties for this purpose. In the present study, a deep theoretical investigation is performed on the overall thermal conductivity of low-density polyethylene (LDPE) foams. The thermal conductivity by radiation is predicted using two different methods. The most appropriate model is selected in comparison with experimental results. The results show that the theoretical model has an appropriate agreement with the experimental results. The effects of foam characteristics including foam density, cell size, and cell wall thickness on the overall thermal conductivity are investigated. The results indicate that by decreasing the cell size and increasing the cell wall thickness, the overall thermal conductivity is decreased significantly. Also, there is an optimum foam density in order to achieve the smallest thermal conductivity. The lowest overall thermal conductivity achieved in the studied ranges is 30 mW/mK at foam density of 37.5 kg.m-3, cell size of 100 μm, and cell wall thickness of 6 μm.