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ABSTRACT 

The presence of ultrahigh molecular weight species in polymer melt facilitates the formation of highly-oriented crystalline 

structures and favors the improvement of mechanical properties. However, due to the random copolymer chain architecture, 

it is difficult to obtain high orientation of crystals for polypropylene random copolymers (PPR). In this work, two binary 

blends including polypropylene (PP)/ultrahigh molecular weight polyethylene (UHMWPE) and polypropylene random 

copolymer (PPR)/UHMWPE were fabricated via solution blending and subsequent melt shear through mini-injection 

molding. It was found that highly-oriented crystalline structure forms under shear flow in both blend series. The tensile 

strength of PP blends increased from 38.3MPa to 43.8MPa while the PPR blends showed a more significant property 

enhancement and increased from 32.5MPa to 38.1MPa. Importantly, PPR shows an increased miscibility with UHMWPE in 
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comparison with PP due to the existence of ethylene segments. The tensile toughness of PPR samples was greatly maintained 

especially for blends with small addition of UHMWPE, which may be ascribed to the crack-suppression effect originated 

from well-dispersed UHMWPE domains (particle size < 0.50 μm) locked by the co-crystal structures between PPR segments 

and molecularly mixed PE chains. 

Keywords: Mechanical property; polymer blending; phase morphology; crystal orientation. 

 

INTRODUCTION  

As a well-known commercial plastic, isotactic polypropylene (iPP) gains substantial market shares 

and extensive applications such as packaging, automobile, functional components like battery 

separators due to its good processability, low cost and excellent chemical resistance [1-4]. 

Polypropylene(PP) is a semi-crystalline polymer whose molecular chains can self-organize into 

different crystalline polymorphs including α，β and γ phases [5-7]. Different phase morphologies 

endow PP good adaptability in various working conditions. However, in some engineering cases, the 

poor toughness at low temperature or under high strain rate limits its use. Polypropylene random 

copolymer (PPR) is synthesized by inserting 1-olefins such as ethylene, 1-butene, and 1-hexene into 

the PP chains, which improves the toughness to some extent [8,9]. But the high viscosity and elasticity 

induced by high molecular weight and broad molecular weight distribution restricted its processability. 

Meanwhile, the random insertion of a small amount of 1-olefin along the PP chains promotes the 

formation of short blocks and leads to lower crystallization temperature and overall crystallinity 

[8,10,11]. In all cases, it is fundamental and crucial for these PP-based materials to improve their 

mechanical properties to meet versatile requirements. 

Extensive studies have been conducted to achieve targeted improvement in the mechanical properties 

of PP and copolymers. It is widely accepted that fabrication of PP-based composites or 

nanocomposites is one effective way [12-14]. Incorporating nanofillers into polypropylene (PP) can 

significantly reduce the weight of load-bearing components, enhancing their performance without 

compromising structural integrity. Glass-fiber reinforced PP composites exhibit advanced properties 

and can be easily processed through conventional methods like injection molding [15]. Similarly, 

layered silicates such as montmorillonite were added into PP system and dispersed into single layers 



 

 

with the aid of interfacial compatibilization [16]. In recent years, carbon nanofillers is widely used in 

PP nanocomposites including carbon fiber, carbon nanotubes(CNT), and graphene [17-19]. The 

incorporation of nanofillers into polypropylene (PP) nanocomposites naturally endows them with 

novel functionalities, expanding their range of applications and performance capabilities [20]. For 

instance, Wu et al. used in-situ synthesis method to synthesize nano-silver and fabricate PP-based 

composites with good antibacterial property for disinfection purpose [21]. Thomassin et al. introduced 

carbon nanotube with a low concentration into polypropylene matrix with the purpose of effective 

electromagnetic interference (EMI) absorber [22]. Rubsam et al. developed an anchor-peptide-based 

toolbox for green polypropylene functionalization and further equipped polypropylene with the 

fluorescent dye via taking the anchored peptide as the adhesion promoter [23]. However, the filler-

reinforced system inevitably faces challenges such as achieving a uniform dispersion of nanofillers 

within the matrix and scaling up the production of new types of nanofillers with superior physical 

properties. 

Polymer blending is another versatile, low-cost and high-efficient method in polymer processing 

industry. Blending modified polypropylene (PP) with polyethylene (PE) is a widely adopted strategy 

in the polyolefin system. This approach is favored due to the similar chemical structures of the 

polymers, which allows for adjustable melt miscibility based on the topological chain structures of PE 

[24]. It was reported that linear low-density polyethylene (LLDPE) can possess a good miscibility 

with PP in a proper composition range while phase separation occurs when PP is blending with high-

density polyethylene (HDPE) or low-density polyethylene (LDPE) [25]. In addition, coupling with 

external flow field always favors crystal orientation and high mechanical properties for polyolefin 

blends [26-28]. Fu and coworkers found that melt-drawing PP/HDPE blends upon cooling can direct 

lamellar orientation of PE by epitaxial crystallization especially when interfacial nucleation dominates 

[29]. For comparison, Fu et.al also investigated flow-induced epitaxial growth of HDPE in its blends 

with the low crystallizable PPR [30]. They found that epitaxy growth of PE on PPR crystal can be 

achieved in blends with 30wt%PE during shear condition while the epitaxy growth is hindered by the 

formation of shish-kebab when PE content is large [30]. In addition, previous reports clearly showed 

that small change of crystal structures and crystal morphology could alter the final mechanical 

performance [31]. In addition to conventional polyethylenes (PEs), ultrahigh molecular weight 

polyethylene (UHMWPE), known for its exceptional properties including superior wear resistance, 



 

 

creep resistance, and high-impact strength, can be effectively integrated into PP-based systems to 

enhance their performance. Hashimi and coworkers investigated the effect of blend composition on 

sliding wear property of PP/UHMWPE blends and found that wear loss was significantly lower than 

that of PP due to improved temperature reduction at the contact surface [32]. Furthermore, Chen et al. 

constructed β-crystals in PP by adding UHMWPE combined with applying melt flow by 

microinjection molding machine [33]. Kamayar et al. explores the toughening mechanisms in 

polypropylene to achieve a balance between strength and toughness in thermoplastic composites [34]. 

Ding et.al reported the annealing effect on low-temperature toughness of PPR blends [35]. However, 

melt-blending cause phase separation and resulted in UHMWPE domain with several hundred 

micrometers within PP matrix. And it still remains to be addressed to effectively tune the crystalline 

morphology of PPR by adding UHMWPE since partial ethylene component in PPR may be favorable 

for the melt miscibility between PPR and UHMWPE. 

In this work, we have prepared PP/UHMWPE and PPR/UHMWPE blends with the aid of solution-

blending in consideration of possible molecular mixing. In order to exert melt shear and induce 

possible highly orientated crystals, both blend systems were prepared through mini-injection molding 

technique. The goal of this paper is to explore the effect of long chains of PE on the crystalline 

structures and final mechanical properties of PP and PPR system in which the intrinsic crystallization 

is different due to the insertion of co-monomers. As a consequence, PE long chains are favorable for 

tuning mechanical strength-toughness balance of PP or PPR systems especially under melt shear 

conditions mainly due to the formation of highly-oriented crystalline structures. This work provides 

some guidance for structure manipulation and optimizing mechanical property of polypropylene 

random copolymers.  

 

EXPERIMENTAL 

Materials 

Polypropylene (PP) with a tradename of T30S was purchased from Dushanzi Petroleum Chemical 

Incorporation (Xinjiang, China), with a melt flow index of 0.96g/10min(190oC, 2.16kg). 

Polypropylene random copolymer (PPR) used in this study was purchased from Hyosun 

Company(Korea) with a tradename of R200P. The MFI index of PPR is 0.23 g/10min. It possesses a 

molecular weight of 720,000 g/mol and a PDI index of 4.5. The mass percentage of ethylene 



 

 

component was as low as 3.8wt%. Ultrahigh molecular weight polyethylene (UHMWPE) powder was 

purchased from Second Auxiliary Factory (Beijing, China), with a molecular weight of 5,500,000 

g/mol. 

Sample preparation 

 

Figure 1. Schematic presentation for the preparation of IU and PU samples. 

 

Figure 1 shows the schematic illustration for the preparation of PP and PPR samples blended with 

ultrahigh molecular weight polyethylene (UHMWPE). Firstly, a fixed content of UHMWPE was 

solution blended with iPP or PPR in hot xylene in order to achieve a molecularly mixed blend system. 

The above polymer blend was taken as a master batch. Then the master batch was melt blended with 

iPP or PPR pellets in a twin-screw extruder to produce iPP or PPR based samples containing different 

content of UHMWPE. A small amount of antioxidant (Irganox 1010) was added into the blends to 

prevent thermal decomposition during melt processing. In addition, the processing condition was set 

as processing temperature of 160-190oC from hopper to die with a fixed speed of 80 rpm. Finally, the 

blended samples were prepared by mini-injection molding, which can apply shearing on the melt. For 

simplicity, the iPP/UHMWPE blends were named as IxU while the PPR/UHMWPE blends were 

named as PxU, where x presents the content of UHMWPE. For example, P2.5U represents PPR sample 

containing 2.5 wt% UHMWPE.  

 

Testing and characterization 

A Perkin-Elmer diamond-II differential scanning calorimetry (DSC) was used to evaluate the 

crystallization and melting behaviors of PP/UHMWPE and PPR/UHMWPE blended samples. The 

cooling and heating rate was fixed as 10oC/min. The samples with a fixed weight of ~5mg were heating 



 

 

first to erase thermal history and the cooling and subsequent second heating curves were recorded to 

evaluate the crystallization and melting behaviors of the blends. 

Standard tensile tests were conducted on a dumbbell-shaped samples using a SANS Universal tensile 

testing machine according to the ASTM D638-03 standard. The tensile speed was fixed as 50mm/min. 

The crystalline morphologies were evaluated by using a Hitachi S3400 scanning electron microscopy 

(SEM) with an acceleration voltage of 20kV. The samples were cryo-disrupted and the fracture surface 

was chemically etched by etching acids. Then the surface was sputtered by a thin layer of gold before 

observation. 

Polarized Light Microscopy (PLM) equipped with a Linkam Hot stage (THMS-600) was used to 

capture morphological changes during predetermined thermal history. The extruded granules were 

melted at 190oC and squeezed to get thin films. Thin films were heated to 190oC for 5min again to 

erase thermal history and then the crystalline morphologies were recorded with camera during cooling.  

The injection-molded samples were tested by 2D-WAXD (Bruke DISCOVER d8 diffractometer). 1D 

azimuthal scans as a function of 2theta can be obtained by integration. Then the relative degree of 

crystallinity (Xc) can be calculated from the ratio of the area of crystalline peaks (Ac) to the whole 

area(A=Ac+Aa), where Aa is the area of amorphous halo. 

Xc=Ac/(Ac+Aa)                                 (1) 

The crystal orientation degree (f) can by quantitatively assessed by Herman’s orientation factor [36-

37]: 
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Where   is the azimuthal angle and 
2cos    indicates the average of 
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cos   , ( )I  stands 

for the scattered intensity. 

 

RESULTS AND DISCUSSION 

The melt-miscibility and crystallization behavior of PP/UHMWPE and PPR/UHMWPE blends 

Representative SEM micrographs obtained from iPP/U and PPR/U blend containing different content 



 

 

of UHMWPE are presented in Figure 2. The inclusion of a mere 1wt% of ultrahigh molecular weight 

polyethylene (UHMWPE) demonstrates melt miscibility with isotactic polypropylene (iPP) and 

polypropylene rubber (PPR), as indicated by the absence of any segregated domain structures in 

Figures 2a and 2b. Wong et al. reported PP/PE blend generally show heterogeneous phase structure 

due to phase separation [38]. Our previous study on blending UHMWPE with olefin block copolymer 

presented that macrophase separation occurs for samples obtained simply by melt blending though the 

addition of UHMWPE is small [31]. Herein, solution blending is favorable for the melt miscibility 

because of the effective disentanglement of UHMWPE. Wang et al. also reported similar behavior for 

iPP/UHMWPE blends obtained by solution blending [39]. When the content of UHMWPE increases 

to 5wt%, both I5U and P5U shows a macrophase separated structure. I5U has dispersed UHMWPE 

phase domain with several microns up to about 5μm in diameter. On the other hand, PPR shows an 

increased melt miscibility with UHMWPE compared with iPP with the same addition of UHMWPE. 

The phase domain of UHMWPE in PPR can remain a smaller size and narrower distribution. 

Furthermore, it can be seen that small UHMWPE particle located in the center of spherulites for both 

iPP and PPR, indicating an effective nucleating effect. 

 

 

Figure 2. Typical SEM images of quenched samples of (a). I1U; (b). P1U; (c). I5U and (d). P5U. 

 



 

 

Figure 3 presents the non-isothermal crystallization kinetics of iPP and PPR containing different 

content of UHMWPE. Fig. 3a and Fig. 3c shows the DSC curves for iPP/UHMWPE blends during 

cooling and subsequent heating scans with a fixed rate of 10oC/min. For the neat iPP, the onset 

crystallization temperature is 122.0oC and the crystallization peak temperature is 114.1oC. When iPP 

is blended with small amount of UHMWPE, there is still one single crystallization peak. With 

increasing the UHMWPE content, the crystallization peak gradually becomes sharp and the peak 

temperature (Tc,peak) increases, indicating UHMWPE plays a role of nucleating site. For I5U sample, 

the Tc,peak even reaches 115.3oC, meaning gradual approaching to Tc,peak of UHMWPE(117.6oC). 

Correspondingly, the melting curves of iPP/UHMWPE blended samples show one single melting peak 

though the peak melting behavior of pure UHMWPE occurs at 131oC. Consistent with previous 

findings, iPP initiates its crystallization process subsequent to the completion of the crystallization of 

UHMWPE [40]. UHMWPE crystals enhance the heterogeneous nucleation for iPP. Due to the close 

crystallization temperature, the crystallization peaks of these two components have overlapped intro 

one single exothermic peak. In comparison, PPR possesses a Tc,peak of ~100.1oC, which is ~10oC lower 

than that of iPP. When adding UHMWPE, Tc,peak of PPR increases obviously from 101.7oC for P0.5U 

to 106.2oC for P5U, which further demonstrate an effective nucleating effect of UHMWPE in PPR 

melt. The pronounced nucleation effect imparted by the incorporation of UHMWPE significantly 

accelerates the crystallization process of PPR, leading to a marked enhancement in the material's 

overall crystallization kinetics. In addition, two individual crystallization peaks arise when UHMWPE 

content is high, indicating phase separation occurred between UHMWPE and PPR. The similar chain 

structure of PPR segment and UHMWPE is effective for miscibility and favors for the formation of 

co-crystal structure. Consequently, the melting curve also shows two peaks especially at high addition 

of UHMWPE, namely, an obvious two-step crystallization process. Overall, the result indicates that 

PPR shows higher melt miscibility with UHMWPE and a small portion of UHMWPE shows better 

nucleating effect in PPR relative to iPP system. 



 

 

 

Figure 3. DSC curves of iPP/UHMWPE and PPR/UHMWPE blends with different UHMWPE content: (a). cooling 

scans for IU samples; (b). cooling scans for PU samples; (c). second heating scans for IU samples; (d). second 

heating scans for PU samples. 

 

To further detect the two-step crystallization behavior of PPR/UHMWPE with high content of 

UHMWPE, selected POM images were captured at different stages under a temperature-jump (T-jump) 

treatment process. The detailed temperature-time protocol, which covers two isothermal stages 

correlated with two crystalline species, can be seen in Figure 4a. For pure PPR, there is no obvious 

crystal nuclei formed after crystallizing under 121oC for 10 min (Fig.4b1). Subsequently, further 

isothermal crystallization was conducted under 116oC and the evolution of crystalline morphologies 

was captured at different time. At early stage (1min at 116oC), there are several nuclei formed. As time 

progresses, the existing nuclei gradually increase in size, eventually reaching spherulite dimensions of 

approximately 150μm after isothermal crystallization for 5 minutes. At the same time, there are some 

new nuclei formed between different spherulites. As for PPR/UHMPWE, significant difference 

appears in terms of the crystallization kinetics and the crystalline morphology. As for P5R blend, in 

regardless of some phase-separated domain of UHMWPE due to limited miscibility, there are some 



 

 

small nuclei formed even when isothermally crystallized under 121oC for 0.5 min. These nuclei is 

ascribed to UHMWPE which can be deducted from non-isothermal DSC data (Fig.3b). Comparatively, 

after T-jump treatment to 116oC, a large number of nuclei and small crystals formed in P5R blend 

when isothermally crystallized for 0.5min. With time evolution (2min at 116oC), close-connected 

spherulites formed and the crystal size greatly decreased to ~15μm, which also indicates the 

remarkable nucleation ability of UHMWPE. It is also easy to find out that the existence of UHMWPE 

gives rise to a much higher crystallization rate. The crystals even impinge with each other which is 

mainly accounted for the fast total crystallization rate during isothermal crystallization process. 

Therefore, large dispersed spherulites are observed in neat PPR sample while small and close-

connected PPR spherulites formed in PPR/UHMWPE blends. 

 

 

Figure 4. (a) Demonstration of the temperature-time protocol of thermal treatment; (b1-b3). typical POM images 

for PPR sample captured at different stage; (c1-c3). POM images for P5U sample captured at different stage. 

Note: the scale bar is 200μm. 

 

The crystalline morphology of PP/UHMWPE and PPR/UHMWPE samples 

Despite of the quiescent crystallization behavior, crystalline morphologies under process conditions 

can determine the final mechanical performance of polymer samples. Consequently, the impact of melt 

shear on the crystalline structures was meticulously examined through the analysis of the 



 

 

microstructure of samples produced via mini-injection molding. Fig.5a-c shows 2D WAXD patterns 

of I-U blends containing different content of UHMWPE. The flow direction was horizontal. The 

characteristic Debye rings located at different site mainly including (110), (040), and (111)/(-131) 

planes of PP. The (110) plane of PE crsytals is overlapped with (111)/(-131) plane of PP crystal. It can 

be observed that the diffraction patterns of the samples presented sharp arcs, indicating strong 

orientation of the molecular chains in these samples. After the addition of UHMWPE, the diffraction 

arc of (040) in the blends becomes sharper than that of pure iPP, which indicates enhanced molecular 

orientation of iPP. As shown in Fig.5e, the overall crystallinity of I-U samples is nearly the same 

(~53%). In order to quantitatively analyze the crystal orientation level of different samples, (040) 

lattice planes of PP was selected to calculate orientation parameter. In Fig.5f. The calculated 

orientation degree was shown in Fig.5g. For pristine iPP, the degree of orientation reaches as high as 

0.78, indicating a high molecular orientation. When adding small amount of UHMWPE, the degree of 

orientation (f) gradually increases with the increase of UHMWPE content. The results indicate that 

melt shear significantly promotes the formation of oriented structures, particularly in melts containing 

UHMWPE. This phenomenon is primarily attributed to the slow relaxation dynamics characteristic of 

UHMWPE. Therefore, the addition of UHMWPE is favorable for crystal orientation of iPP system. 

 



 

 

 

Figure 5. Typical 2D-WAXD patterns of iPP-U injection-molded samples: (a). iPP; (b). I0.5U; (c).I5U; (d). circularly 

averaged 1d-WAXD curves as a function of 2theta; (e). calculated overall crystallinity(Xc) as a function of 

UHMWPE content; (f). azimuthal scan intensities at (040) crystal plane; (g). the degree of crystal orientation (f) of 

three selected I-U samples. Note: the flow direction (FD) is horizontal. 

 

For comparison, crystalline structure and crystal orientation were also evaluated on PPR/UHMWPE 

blends. Fig.6a-c shows 2D-WAXD patterns of PPR, P0.5U, P1U, respectively. Fig.6a-c shows 2D 

WAXD patterns of P-U blends containing different content of UHMWPE. The flow direction was 

horizontal. As for PPR system, α-crystal is also the typical crystal form. Similar to PP system, the 

characteristic diffraction arcs appeared at (110), (040), and (111)/(-131) planes. The short arc instead 

of circles indicated crystal orientation of PPR mainly induced by melt shear. After blending with 

UHMPWE, The orthogonal crystal form of PE possesses typical (110) and (020) crystal plane, which 

are overlapped with (111)/(-131) plane of PPR crystal. The diffraction arc corresponding to the (040) 

plane in the P-U samples exhibits progressive sharpening as the UHMWPE content increases, thereby 



 

 

indicating a significant enhancement in crystal orientation. Fig.6e showed that the total crystallinity 

of P-U samples reaches ~0.53 and is nearly identical for P-U samples with different content of 

UHMWPE. Further quantitative analysis on the degree of crystal orientation was also conducted for 

P-U samples. As shown in Fig.6, the degree of orientation (f) of P-U samples gradually increased from 

0.73 to 0.81 with the increase of UHMWPE content. Consequently, the incorporation of UHMWPE 

into PPR has successfully resulted in the attainment of a high degree of crystal orientation, 

underscoring the significant influence of UHMWPE on the crystallization behavior of the polymer 

matrix. It can be concluded that well-miscible UHMWPE within PPR melts effectively induce oriented 

crystalline structure for PPR during cooling which is good for property enhancement. 

 

 

Figure 6. Typical 2D-WAXD patterns of PPR-U injection-molded samples: (a). PPR; (b). P0.5U; (c).P5U; (d). 

circularly averaged 1d-WAXD curves as a function of 2theta; (e). calculated overall crystallinity(Xc) as a function 

of UHMWPE content; (f). azimuthal scan intensities at (040) crystal plane; (g). the degree of crystal orientation (f) 

of three selected P-U samples. Note: the flow direction (FD) is horizontal. 

 



 

 

 

The mechanical properties of PP/UHMWPE and PPR/UHMWPE samples 

Figure 7 presents the tensile stress-strain curves at room temperature for iPP/UHMWPE and 

PPR/UHMWPE blends. In the case of the iPP series, a characteristic ductile plastic fracture behavior 

is observed, which is manifested by yield deformation, followed by a substantial strain at break, 

accompanied by a slight strain-hardening effect. These findings are in accordance with prior research 

[41]. The yield stress of neat iPP is 38.3MPa. With the increasing addition of UHMWPE, the yield 

stress gradually increased to 43.8MPa, meaning ~14.4% property enhancement. At the same time, the 

elongation at break values of neat iPP reaches ~900%, indicating a good ductility. For iPP containing 

different content of UHMWPE, the elongation at break remains to a high level (>650%). On the other 

hand, the yield stress of neat PPR is 32.5MPa and the elongation at break is ~310%. With the increasing 

addition of UHMWPE, the yield stress of PPR/U blended samples significantly increase by ~47.7% 

to reach 38.1MPa, which is nearly comparative with I5U sample. Interestingly, I0.5U shows an 

increased tensile strength (~45.2MPa) and also presents an elongation at break of ~600%, indicating 

a two-fold increase of tensile toughness. Accordingly, the incorporation of UHMWPE significantly 

augments the properties of iPP and PPR, particularly by facilitating the development of oriented crystal 

structures. In addition, a simultaneous reinforcing and toughening effect was obtained for 

PPR/UHMWPE blends mainly due to the existence of partial PE segments in PPR molecular chains. 

For neat PP sample, tensile deformation can result in cavitation and the deformation of PP after 

yielding is generally inhomogeneous. After adding 1wt% UHMWPE, aligned fibrils can decrease the 

number of voids. Further adding UHMWPE to 5wt%, UHMWPE aggregated is dominating. The weak 

interfacial interaction between the PP and UHMWPE phases results in increased susceptibility to 

debonding and a reduction in elongation at break. In contrast, for PPR, the partial incorporation of 

ethylene monomers is beneficial for enhancing toughness. Because of the chain similarity between PE 

chains and PPR segments, molecularly mixed chains may form co-crystals and thus locking the phase-

separated UHMWPE domains into smaller size. When P1U sample is stretched, UHMWPE domains 

can suppress crack propagation. 



 

 

 

Figure 7. Tensile stress-strain curves of (a). iPP/UHMWPE and (b). PPR/UHMWPE blended samples. 

 

CONCLUSIONS 

In summary, the crystalline morphology and mechanical property of iPP and PPR filled with small 

amount of UHMWPE were investigated. For two blend series, low addition of UHMWPE is inclined 

to be miscible with the matrix while phase separation occurs at high addition of UHMWPE. When 

applied shear flow via mini-injection molding, both PP and PPR blends can achieve high crystal 

orientation, which is favorable for enhancement of mechanical strength. Though two-step 

crystallization process was observed for PPR/U blends, molecularly mixed chains may form co-

crystals and thus locking the phase-separated UHMWPE domains into smaller size owing to the chain 

similarity between PE chains and PPR segments. In this way, crack suppressing effect from UHMWPE 

particles give rise to a simultaneous enhancement of tensile toughness for PPR/U blends. As a 

consequence, PPR systems showed a balanced mechanical stiffness and toughness. This work shows 

a simple and effective approach to realize morphological control and tune mechanical property in PPR 

via blending with UHMWPE. 
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