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ABS‌TRACT

Certain cyclic olefin copolymers (COCs) are known as promising amorphous materials with high transparency 
in the UV-vis region, thermal and humidity resistance, low dielectric constant, low water absorption, and 

dimensional stability. This short review focuses on the synthesis of (new) cyclic olefin copolymers by designed 
(nonbridged) half-titanocene catalysts, which enabled to proceed synthesis of the amorphous polymers by ethylene/
propylene copolymerization not only with norbornene (NBE), and tetracyclododecene (TCD), but also with so 
called low strained cyclic olefins (cyclopentene, cyclohexene, cycloheptene, and cyclooctene). Their thermal 
properties (glass transition temperature, Tg values) are affected by structure of the cyclic olefin employed and the 
contents, whereas linear relationships between Tg values and the contents were observed in all cases. Polyolefins 
J (2023) 10: 59-70
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 MINI REVIEW

INTRODUCTION

Olefin polymerization by early transition metal catalysts 
is the core technology for industrial production of 
polyolefins. Synthesis of the new copolymers that 
are not able to be prepared by conventional catalysts 
(Ziegler-Natta, metallocene catalysts, etc.) has been 
a long-term interest.  This is because that (thermal, 
physical, mechanical, electronic) properties of the 
resultant copolymers were modified by the individual 
components. Functional polyolefins with specified 
properties should be more sustainable than those 

prepared from rather complicated monomers required 
several steps from fossil oil, especially in terms of 
better materials recycling (monomer unifications) and 
chemical recycling (no or much less additional functional 
groups, less additive). Design and development of the 
molecular catalysts for the purpose (highly active, better 
comonomer incorporations) has thus been a promising 
subject for successful synthesis [1-15].

It has been known that the ligands (steric and 
electronic) as well as the basic geometry (structural 
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features) in the catalysts play an important role 
in catalysis. As shown in Scheme 1, it has been 
proposed that ansa (bridged) metallocenes showed 
better α-olefin incorporation than the unbridged ones 
in the ethylene/α-olefin copolymerization, and the 
ansa (cyclopentadienyl)(amide)titanium catalysts, 
exemplified as [Me2Si(C5Me4)(N

tBu)]TiCl2 (called 
CGC, constrained geometry catalyst) [3], exhibited 
the more efficient α-olefin incorporation [3,16-18]. 
These facts were explained as due to a concept that 
the bridge constrains the structure to provide a more 
open coordination space for the coordination of 
α-olefins (rather steric bulk compared to ethylene).  
Indeed, the CGC demonstrated a capability of (rather) 
efficient styrene incorporation in the ethylene/styrene 
copolymerization [6,7], but showed invariably of 
the incorporation (<50 mol%) [2,6,7,19]. Later, 
the bimetallic catalysts (bimetallic CGC) enabled 
synthesis of the copolymer with high styrene content 
(76 mol%) [19-21]; the catalyst also enabled the 
synthesis of ethylene copolymers with disubstituted 
α-olefins [20,21]. 

Half-titanocenes modified with anionic ancillary 
donor ligands of type, Cp’TiX2(Y) (Y = phenoxide, 
ketimide, phosphinimide, iminoimidazolide, 
amidinate etc., Scheme 2), first were demonstrated 
by us with phenoxide [22,23], and the synthesis of 
the new ethylene copolymers by incorporations of 
various olefins (sterically encumbered olefins, cyclic 
olefins, aromatic vinyl monomers, the others) was 
demonstrated [5-7, 16-38]. In particular, both the 

phenoxide (1) and the ketimide (2) analogues have 
been known as successful examples. Later, the η1-
amidinate analogue (3) demonstrated the industrial 
production of chlorine-free synthetic rubber (EPDM, 
ethylene propylene diene terpolymer) without 
deep cooling, which is commonly employed in the 
conventional (Ziegler type) vanadium catalyst systems 
in industry [13].

Certain cyclic olefin copolymers (COCs) are 
promising amorphous materials with high transparency 
in the UV-vis region, high thermal resistance, low 
water absorption (humidity resistance), low dielectric 
constants, and dimensional stability; some of the 
ethylene-based copolymers have been commercialized 
(as TOPAS®, APEL®) [39,40] as ultra-pure, crystal-
clear, and high barrier materials (especially for optical 
and medical applications). The copolymerization 
approach enables modification of their compositions 
(cyclic olefin contents, etc.) and microstructures 
(including tacticity, etc.). Although we can see many 
reports for the ethylene copolymerization with highly 
strained norbornene (NBE) by ordinary metallocene 
catalysts, half-titanocene catalysts, and the others 
(Scheme 2) [41-48], however, the successful examples 
for the efficient synthesis of random, high molecular 
weight copolymers with high NBE contents (high 
glass transition temperature (Tg values)) still have been 
limited by the ketimide analogue (2a) and the modified 
linked half-titanocenes (shown below) [49-51]. 
Moreover, the successful examples in the synthesis of 
amorphous copolymers by incorporation of low strain 

Scheme 1. Selected group 4 transition metal complex catalysts for olefin polymerization (metallocene, ansa-half-titanocene 
called constrained geometry catalyst, CGC).
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monomers (cyclopentene, cycloheptene, cyclooctene 
etc.) still have been limited, as described below.

This short review (perspective) thus introduces 
successful reports for the synthesis of various COCs 
that were very difficult to prepare by conventional 
catalysts.  These research efforts could provide 
important information on the basic design of cyclic 
olefin copolymers (monomer design) as well as 
catalysts.

ETHYLENE COPOLYMERIZATION WITH  
NORBORNENE (NBE), AND  TETRA-
CYCLODODECENE (TCD)

In the ethylene/NBE copolymerization by ordinary 
metallocene (exemplified as SBI-Zr, Scheme 3) and 

CGC, both the activity and the molecular weight (Mn 
values) in the resultant copolymers decreased with 
increase in the NBE contents (NBE concentration 
charged, Table 1) [41,42,47]. In contrast, the fluorenyl 
analogue (Flu-CGC) enabled to proceed the NBE 
living polymerization in the presence of appropriate 
Al cocatalyst (dried MAO prepared by removing 
AlMe3 from the commercially available MAO in 
toluene solution, or MMAO) [50,52,53]. The catalyst 
exhibited more efficient NBE incorporation than 
CGC, which enabled to afford not only the ethylene 
copolymers with high NBE contents [50], but also 
synthesis of NBE copolymers with propylene [53], 
α-olefin (1-hexene, 1-octene, etc.) [54,55], and later 
the gradient NBE copolymers with 1-alkene (1-octene, 
1-decene, and 1-dodecene) [56]. Effect of the fluorenyl 
substituent plays a role toward the activity [55]. 

Efficient synthesis of the ethylene/NBE 
copolymers with efficient NBE incorporation was 

Scheme 2. Nonbridged half-titanocenes: Basic concept for the catalysts design and selected examples of catalysts, and 
copolymers.
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also demonstrated by the ketimide-modified half-
titanocene, CpTiCl2(N=CtBu2) (2a) to afford the high 
molecular weight random copolymers with high NBE 
contents (Table 1) [51]. No significant decrease in the 
activity (the catalyst deactivation) were observed even 
after 30 min.  The activity rather increased by increasing 
in the initial NBE concentration charged, showing a 
unique contrast to the ordinary catalysts (metallocene, 
linked half-titanocenes like CGC) except Flu-CGC.  
The activities and the NBE incorporation were not 
strongly affected by the Al cocatalyst employed (MAO, 
MMAOs), whereas the effect of the Al cocatalyst was 
apparently observed by Flu-CGC [50,53,54]. The 

activity by 2a increased at 60ºC, and the significant 
decrease in the activity was not observed at 80ºC 
[51]. The efficient synthesis of high molecular weight 
copolymers with high NBE contents (58.8-73.5 mol%) 
could be achieved and the copolymer compositions 
were uniform (confirmed by DSC thermograms, GPC 
traces). As shown in Figure 1, a relationship between 
the Tg values in the copolymer increased linearly 
with an increase in the NBE content [45,47,51]. 
Later, the syntheses of poly(NBE-co-α-olefin)s, and 
poly(TCD-co-α-olefin)s (TCD = tetracyclododecene, 
dimethanoocta-hydronaphthaline) with high Tg values 
(α-olefin = 1-hexene, 1-octene, 1-dodecene) were 

Scheme 3. Ethylene copolymerization with norbornene (NBE).

Table 1. Ethylene (E) copolymerization with norbornene (NBE) by [Me2Si(indenyl)2]ZrCl2 (SBI), [Me2Si(C5Me4)(N
tBu)]TiCl2 (CGC), 

(indenyl)TiCl2(O-2,6-iPr2C6H3) (1e), CpTiCl2(N=CtBu2) (2a), CpTiCl2[1,3-tBu2(CHN)2C=N] (4) – MAO catalysts (references 51,58).(a)

Cat. (μmol) Temp./ºC E/atm NBE(b)/M [NBE]0/[E]0
(c) Activity(d) Mn

(e) Mw/Mn
(e) NBE(f)/mol%

SBI (0.10)
SBI (0.10)
CGC (0.50)
CGC (0.50)
1e (0.2)
1e (0.5)
2a (0.02)
2a (0.02)
2a (0.02)
2a (0.02)
2a (0.02)(g)

2a (0.01)(h)

2a (0.01)(h)

4 (0.20)
4 (0.20)

25
25
25
25
25
25
80
60
40
25
25
25
25
25
80

4
4
4
4
4
4
4
4
4
4
4
2
2
4
4

0.2
1.0
0.2
1.0
0.2
1.0
1.0
1.0
1.0
1.0
1.0
5.0

10.0
1.0
1.0

0.41
2.04
0.41
2.04
0.41
2.04
3.94
3.02
2.45
2.04
2.04
20.6
41.2
2.04
3.94

28860
4860
2460
2000

10500
2300

133000
194000
48900
40200
59700
85800
31500
6180
5780

231,000
229,000
211,000
128,000
146,000
58,700

338,000
475,000
620,000
719,000
613,000
340,000
444,000

108,0000
800,000

2.02
2.37
1.88
2.15
1.56
1.82
2.34
2.20
2.37
2.92
2.18
2.00
2.01
2.53
2.35

10.8
29.5
9.6

26.5
14.0
35.2
61.7
51.2
45.9
40.7
41.0
65.8
73.5
31.4
36.9

(a)Conditions: toluene and NBE total 50 mL, ethylene 4 atm, MAO (white solid) 0.5-3.0 mmol, 10 min. (b)Initial NBE concentration in mmol/mL. 
(c)Initial NBE/E molar ratio. (d)Activity in kg-polymer/mol-M·h (M = Ti, Zr). (e)GPC data in o-dichlorobenzene vs PS stds. (f)NBE content (mol %) 
estimated by 13C NMR spectra. (g)Time 30 min. (h)Toluene+NBE total 10 mL.
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also demonstrated by 2a, and the NBE/1-octene 
copolymerization in the presence of 1,7-octadiene 
by the tert-BuC5H4 analogue (2b) gave the polymer 
containing terminal olefinic double bond in the side 
chain [57]. Linear relationships between the Tg values 
and the NBE or TCD contents were observed [57].  

The half-titanocene containing imidazolin-2-
iminato ligand, CpTiCl2[1,3-tBu2(CHN)2C=N] (4), 
showed rather high catalytic activities with efficient 
NBE incorporation in the copolymerization to give 
ultrahigh molecular weight copolymers [58]. Although 
the observed activities by 4 were lower than those by 
2a, the catalyst could exhibit a promising possibility of 
the thermally robust, efficient catalyst for synthesis of 
the ultrahigh molecular weight polymers.  Significant 
effect of the ligand substituents toward both the 
catalytic activity and the comonomer incorporation 
could be thus demonstrated.

The ethylene/TCD copolymers are promising 
materials possessing higher Tg values compared to the 
ethylene/NBE copolymers with the same cyclic olefin 
contents. Classical Ziegler-type vanadium catalyst 
systems [VOCl3, VO(OEt)Cl2 – EtAlCl2•Et2AlCl 
etc.] have been employed in industry under deep 
cooling conditions [59]. In contrast to many reports 
for the ethylene/NBE copolymerization [1-30], 
there were reports for the copolymerizations using 
metallocene catalysts (Scheme 4) [60-64], which 
generally exhibited low catalytic activities and/
or less efficient TCD incorporation.  Recently, the 
efficient copolymerization to afford high molecular 
weight polymers with uniform compositions was 
demonstrated by (tBuC5H4)TiCl2(N=CtBu2) (2b) in the 

presence of MAO cocatalyst (Table 2) [65]. The Cp 
analogue, CpTiCl2(N=CtBu2) (2a), which is effective 
catalyst for efficient α-olefin/TCD and ethylene/NBE 
copolymerizations [51-57], however showed low 
catalytic activities.  The activity by 2b increased at 
high temperature with increase in the TCD contents in 
the copolymers.  The resultant polymers possess high 
molecular weights with unimodal molecular weight 
distributions, and a linear relationship between the Tg 
values and the TCD contents was seen (Figure 1). As 
described above, the ordinary metallocene catalysts 
exhibited low catalytic activities with less efficient 
TCD incorporations, and conventional vanadium 
catalyst systems are generally conducted under deep 
cooling conditions, the catalyst (2b) would thus 
provide a promising possibility of development of 
thermally robust catalysts in the copolymerization.

SYNTHESIS OF THE OTHER CYCLIC 
OLEFIN COPOLYMERS

Structure of cyclic olefin should play a role 
toward the properties (thermal and mechanical 
properties, transparency, dielectric constant, etc.).  
For example, ethylene copolymers with exo-
1,4,4a,9,9a,10-hexahydro-9,10(1’,2’)-benzeno-
l,4-methanoanthracene showed better mechanical 
property in film (elongation-at-break, stress-strain 
behavior) compared to the copolymers with BE with the 
similar Tg value [66]. As described in the introduction, 
the reports for the ethylene copolymerization with 
so called low strained cyclic olefins, especially 
cyclohexene (CHE) [67], cycloheptene (CHP) 
[68-70], and cis-cyclooctene (COE) [68-71] were 
limited until recently, whereas there are reports in the 
copolymerization with cyclopentene (CPE) [68,72-
76].  The copolymerization with CHP, and COE by 
the linked half-titanocene catalysts afforded low 
molecular weight oligomers even under the specified 
conditions [68], and the synthesis of high molecular 
weight amorphous copolymers thus seemed very 
difficult until recently [70].  

The ethylene/CPE copolymers prepared by 
ordinary zirconocene (metallocene) catalysts 
possessed a microstructure with 1,3- (and 1,2-) CPE 
insertion, and subsequent ethylene was inserted after 
isomerization of inserted CPE [72,73], whereas the 
copolymerization by titanium catalysts proceeded via 
1,2-CPE insertion [68,74-76]. The copolymerization 

Figure 1. Plots of glass transition temperature (Tg) vs 
norbornene (NBE) or tetradecane (TCD) contents in the 
ethylene (E) copolymers, poly(E-co-NBE)s, and poly(E-co-
TCD)s [49,51].
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with efficient CPE insertion as well as with high 
activity was demonstrated by the tBuC5H4-ketimide 
analogue (2b) to afford high molecular weight 
copolymers (CPE content <43.6 mol%) [76]. A linear 
relationship between the CPE content and the Tg value 
was also demonstrated [75]. Cp’TiCl2(O-2,6-iPr2C6H3) 
[Cp’ tBuC5H4 (1c), 1,2,4-Me3C5H2 (1d)] proceeded 
the copolymerization with CHE with 1,2-insertion, 
whereas the other catalysts (metallocenes, CGC, 
1a, 2, 4) did not incorporate CHE under the similar 
conditions [67]. The catalysts enabled synthesis of the 
ethylene copolymers with 4-methyl-1-cyclohexene 
(with 1,2-insertion) and 1-methylcyclopentene(with 
1,2- and 1,3-insertion) [77].

The ethylene/COE copolymerization by 1a gave 
high molecular weight amorphous copolymers with 
efficient 1,2-COE incorporations (Mn = 1.08-12.6×105), 

whereas the ketimide analogue (2a) showed rather 
less COE incorporations compared to 1a but showed 
higher activities to afford ultrahigh molecular weight 
copolymers [70]. The copolymerization with CHP 
by 1a gave ultrahigh molecular weight amorphous 
copolymers (Mn = 1.32-3.08×106) with exclusive 
1,2-CHP insertion. In contrast, CGC and SBI-Zr 
gave (semi)crystalline copolymers with less COE 
incorporations (Scheme 5); the resultant polymers 
by SBI-Zr possessed broad molecular weight 
distributions with 1,3-insertion [70]. The ketimide 
analogue (2a) showed notable activities in the 
copolymerization with tricyclo[6.2.1.0(2,7)]undeca-
4-ene (TCUE) to produce high molecular weight 
copolymers (Mn = 6.4‒22.0×105, TCUE content 9.4-
40.7 mol%) [70].  

As observed in the ethylene copolymers with NBE, 

Table 2. Ethylene copolymerization with tetracyclododecene (TCD) by Cp’TiCl2(N=CtBu2) [Cp’ = Cp (2a), tBuC5H4 (2b)], 
CpTiCl2[1,3-tBu2(CHN)2C=N] (4), Me2Si(C5Me4)(NtBu)]TiCl2 (CGC)–MAO catalysts (reference 65).(a)

Ti/μmol TCD(b)/mol/L Temp./°C Activity(c) Mn
(d)×10-5 Mw/Mn

(d) Tg
(e) (Tm

(e))/°C TCD(f)/mol%
CGC (0.05)
2a (0.8)
2b (0.02)
2b (0.02)
2b (0.02)
2b (0.02)
2b (0.02)
2b (0.02)

1.0
2.0
1.0
2.0
2.0
2.0
3.0
4.0

25
25
25
25
40
60
25
60

13900
1650

43700
23900
27800
33300
16800
22400

14.3
1.92
5.88
6.38
6.43
6.53
6.43
6.08

1.58
1.41
1.60
1.50
1.67
1.72
1.61
1.61

56
150
108
153
170
177
171
203

25.6
32.8
33.5g

35.3
33.6g

36.7

 (a)Polymerization conditions: toluene and TCD total 30 mL, ethylene 6 atm, 10 min, d-MAO (prepared by removing toluene and AlMe3 from
 the ordinary MAO) 3.0 mmol. (b)Initial TCD concentration in mmol/mL. (c)Activity = kg-polymer/mol-Ti·h. (d)GPC data in o-dichlorobenzene vs
polystyrene stads. (e)By DSC thermograms. (f)Estimated by 13C NMR spectra. (g)Estimated on the basis of the plots of Tg and TCD content.

Scheme 4. Reported catalysts for ethylene/tetracyclododecene copolymerization.



65

Nomura K.

Polyolefins Journal, Vol. 10, No. 2 (2023)

IPPI

TCD (Figure 1), and with CPE, linear relationships 
between their Tg values and the cyclic olefin contents 
were demonstrated in all cases (Figure 2).  It is clear 
that their Tg values were affected by the ring size; 
placing an additional ring into cyclohexene leads to 
an increase in the Tg value [70]. 

More recently, synthesis of the amorphous 
propylene copolymers with CPE, CHE, CHP, COE, 
TCUE, and with TCD were demonstrated (Scheme 6) 
[37]. Linear plots of the Tg values versus the cyclic 
olefin contents were seen in all cases, suggesting that 
the cyclic structure affects the Tg values (except the 
copolymers with CPE, COE); the Tg values in the 
propylene copolymers were higher than those in the 
ethylene copolymers in the region of low cyclic olefin 
content (up to 25 mol%) [37].  

Scheme 5. Ethylene copolymerization with (low strained) cyclic olefins [67,70,75,76].

Figure 2. Relationships between Tg values and cyclic olefin 
content in the ethylene-cyclic olefin copolymers: Effect of 
monomer structure toward their thermal property [70].

Scheme 6. Propylene copolymerization with (low strained) cyclic olefins [37].
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CONCLUDING REMARKS AND OUTLOOK

As described in the introduction, olefin polymerization 
by transition metal catalysis is the core technology for 
the polyolefins process, and the development of new 
ethylene copolymers that have not been incorporated 
by conventional catalysts has been a long-term 
subject. In this manuscript, recent development for 
synthesis of cyclic olefin copolymers (COCs) has 
been reviewed including our recent reports.  It is clear 
that design of the molecular catalysts plays a key role 
for the success. Additionally, analysis of catalytically 
active species (the structural and electronic nature) has 
been the central subject for understanding the catalysis 
mechanism, and we recently use solution synchrotron 
XAS (X-ray absorption spectroscopy) analysis such 
as XANES (XANES = X-ray Absorption Near Edge 
Structure) for analysis of the oxidation state and the 
basic geometry and their coordination atoms to the 
centered metal through EXAFS (EXAFS = Extended 
X-ray Absorption Fine Structure) [78,79]. The method 
should provide information of the oxidation state, the 
geometry, coordinated atom and the distance through 
the spectra.  We hope that we could introduce clear 
picture for designing new COCs and more efficient 
molecular catalysis through this paper.
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