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ABSTRACT

The substituents on cyclopentadienyl (Cp) can regulate the electronic effect and hindrance of the active center 
in the metallocene catalyst. This modification can greatly change the catalytic activity of the catalyst and 

affect some features of the polymer. In order to study the effect of alkyl substituents on Cp in the performance 
of a typical metallocene catalyst Cp2TiCl2 for ethylene polymerization, two types of catalyst active centers were 
designed, including non-bridge [Cp2(R)TiCH3]

+ and bridge [NCP2 (R)TiCH3]
+ (R = H, Me, iPr). The effects of 

alkyl substituent steric hindrance were explored by density functional theory on the complex of catalyst active 
center with ethylene and the formation of transition state. The results showed that the increase of substituent steric 
hindrance was unfavorable to complex between ethylene monomer with catalyst active center. Moreover, the bigger 
alkyl substituent, the greater the activation energy of ethylene insertion into catalyst active center and the more 
difficult is ethylene polymerization. Therefore, the performance of metallocene catalysts could be regulated by the 
substituent on Cp. Polyolefins J (2023) 10: 35-43
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INTRODUCTION

Since the discovery of Ziegler-Natta catalyst in 1953, 
researchers pay attention to develop the high-performance 
catalysts for olefin polymerization. In 1959, Breslow 
and Natta[1] respectively studied the homogeneous 
polymerization of ethylene with metallocene as catalyst, 
which is composed of Cp2TiCl2 and Et2AlCl. The 
active center Ti4+ in Cp2TiCl2 is easily over reduced 

by Et2AlCl and loses polymerization activity, so the 
catalyst polymerization activity of Cp2TiCl2/Et2AlCl 
system is low. Sinn[2] and Kaminsky[3] accidentally 
found that adding a small amount of water to Cp2ZrMe2/
AlMe3/ethylene system can make the original inactive 
system have high polymerization activity in 1980s[4]. 
This important discovery made a breakthrough in 
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the development and application of metallocene 
catalysts. Kaminsky observed that AlMe3 was partially 
hydrolyzed to methylaluminoxane (MAO) [5]. MAO 
can activate Cp2ZrMe2 and greatly improve the ethylene 
polymerization activity [6]. Metallocene catalyst has 
extremely high activity, narrow molecular weight 
distribution and adjustable structure of polyolefin 
compared to traditional Ziegler-Natta heterogeneous 
catalyst system [7-10].The polymer has narrow 
molecular weight distribution and uniform composition 
distribution, and three-dimensional controlled 
polymerization could be effectively carried out by the 
metallocene catalysts [11,12]. The molecular structure 
of the catalyst is controlled by ligand modification, 
which regulates the performance of the catalyst [13,14]. 
The substituents on Cp can regulate the electronic 
effect and hindrance of the active center of the catalyst. 
Metallocene complexes with different structures can 
be designed and synthesized through the regulation 
of substituents[15-17]. This modification can greatly 
change the catalytic activity of the catalyst and affect 
some features of the polymer, such as molecular weight 
[18,19] and comonomer content [20,21]. Metallocene 
catalysts with some symmetry factors can also realize the 
stereoselective control of olefin polymerization [22,23], 
such as isotactic polypropylene [24,25], syndiotactic 
polypropylene [26] and random polypropylene 
[27,28]. By controlling the polymerization conditions 
and modifying the molecular structure of the catalyst 
[29-31], polyolefins with specific stereoregularity 
can be prepared, so polyolefin products suitable for 
various market needs can be easily obtained[32-35]. 
Cp2TiCl2 is a classical metallocene catalyst for olefin 
polymerization. In this paper, we study the effect of 
steric hindrance of alkyl substituents on Cp on the 
performance of a typical metallocene catalyst Cp2TiCl2 
for ethylene polymerization by density functional 
theory (DFT). The mechanism of the effect of steric 
hindrance is revealed, which guided the design of new 
metallocene catalysts.

CALCULATION DETAILS

The active centers of the catalysts were non-bridge 

metallocene [Cp2(R)TiCH3]
+ (Figure1a) and bridge 

metallocene [NCp2(R)TiCH3]
+ (Figure 1b) (R = H, 

Me, iPr). All DFT calculations were completed with 
Dmol3 software. Geometry optimization had been 
performed via Becke-Lee-Yang-Parr (BLYP) function 
within the generalized gradient approximation (GGA) 
[36]. The dispersion function was Tkatchenko-
Scheffer (TS) in all calculations considering the van 
der Waals force. The localized double numerical 
basis sets with polarization functions (DNP) basis 
sets were used to expand the Kohn-Sham orbitals. 
The geometry optimization adopts full geometry 
optimization without any restriction of molecular 
symmetry. The convergence criteria of energy, force 
and displacement were 1×10-5 Ha, 0.001 Ha/Å, and 
0.005 Å. In the process of geometry optimization, 
all reactants, intermediates and products have real 
frequencies. The transition state path and transition 
state structure adopt the complete Linear Synchronous 
Transit/Quadratic Synchronous Transit (LST/QST) 
method [37]. Each transition state was confirmed to 
have only one imaginary frequency, and the vibration 
direction can correctly connect the reactant and 
product.

RESULTS AND DISCUSSION

The selection of basis set
Substituent steric hindrance effect of Cp2TiCl2 catalyst 
for ethylene polymerization was studied in Dmol3 
using GGA-BLYP. B3LYP/6-31G (d, p) basis set in 
Gaussian 09 was used in order to verify the accuracy 
of results. [Cp2(Me)TiCH3]

+ was used as active center, 
the model was optimized structure, and reacted with 
ethylene by Gaussian 09. The corresponding results 

Figure 1. Metallocene catalyst (a) and bridge metallocene 
catalyst (b) active center. 
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are list in Table 1, which show that the result of GGA-
BLYP was consistent with that of B3LYP/6-31G 
(d, p). Hence, GGA-BLYP was adopted to improve 
the computational efficiency in different substituent 
models.

Active center structure
The catalysts studied in this chapter are Cp2TiCl2 and 
methylene bridge NCP2TiCl2. The catalyst reacts with 
MAO to active centers:

Al-O
Me

n
Cp2TiCl2 + Cp2Ti-CH3 Al-O

Cl

n+
-

 

The structures of the active centers [Cp2(R)TiCH3]
+ 

and [NCp2(R)TiCH3]
+ (R=H, Me, iPr) and the Mulliken 

charge of the active species Ti4+ cations are regulated 
by the substituents on the cyclopentadienyl (Cp) 
group. The Cp group moves and rotates with different 
substituents in [Cp2(R)TiCH3]

+, whereas the bridge 
structure fixes the Cp group and limits its activity range 
in the bridge [NCp2(R)TiCH3]

+ active center. Figure 2 
shows the optimized structure of active centers. When 
the volume of the substituent was increased in the 
non-bridge [Cp2(R)TiCH3]

+ active center, the angle 
Cp1-Ti-Cp2, the distance between the metallocene 
ring and the Ti4+ cation of the active center, and the 
Mulliken charge on the Ti4+ cation of the active center 
also was increased because of the repulsion between 
the alkyl substituent on the Cp group and the methyl 
in the active center. Thus, the complex ability between 
the Cp group and the active center of the catalyst was 
weakened. In the bridge [NCp2(R)TiCH3]

+ active 
center, the angel Cp1-Ti-Cp2 was smaller than that of 
non-bridge [Cp2(R)TiCH3]

+ due to the limitation of 
methylene bridging. In the [NCp2(R)TiCH3]

+/ethylene 
complex system, Cp1-Ti-Cp2 decreased slightly with 
increasing of the volume of substituent on Cp group 
due to the repulsion between alkyl substituent on 
Cp group and methyl group of catalyst active center. 
The distance between the Cp and the Ti4+ cation in 
the catalyst active center only was lengthen slightly, 
however the complex ability between the Cp group 
and the catalyst active center decreases because the 
Mulliken charge of the Ti4+ cation in the catalyst active 
center was increased.

Complexation of ethylene with active center of 
catalyst
The first step is the catalyst active center complex 
with ethylene in the polymerization process. The π 
electron on the C=C bond of ethylene transfers to the d 
orbital of the catalyst active center Ti4+ cation to form 
the ethylene/catalyst active center complexation. The 
bond length of the C=C bond was elongated, which 

Table 1. Structural and reaction parameters of [Cp2(Me)TiCH3]
+.

Active center Cp1-Ti-Cp2 (º)
 d(Cp1-Ti)

(Å)
 d(Cp2-Ti)

(Å)
 d(Ti-CH3)

(Å) QTi(e)  Complex energy
(kJ/ mol) Eact (kJ/mol)

GGA-BLYP
B3LYP/6-31G (d, p)

134.584
134.533

2.119
2.201

2.12
2.13

2.18
2.19

0.653
0.655

-246.3
-243.2

85.1
84.6

Figure 2. Geometric parameters and Mulliken charge of the 
optimized structure of catalyst active center.
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was between the C-C single bond and the C=C bond. 
The structure of the active center and the Mulliken 
charge was also changed. Figure 3 and Table 2 showed 
the optimized structure and structural parameters of 
the catalyst active center with ethylene complexation. 
The catalyst active center adsorbed ethylene, the 
bond length between Cp and Ti4+ cation and the 
bond length of Ti-CH3 were all elongated because 
ethylene weakened the bond of Ti4+-Cp and Ti4+-CH3. 
Mulliken charge of Ti4+ cation in the complex was 
decreased, which π electrons on the C=C transferred 
to the d orbital of Ti4+ cation. The angel Cp1-Ti-Cp2 
was decreased from about 140° to about 134° in the 
non-bridge catalyst system. The angle of Cp1-Ti-Cp2 

was only decreased from 123° to 121° in the bridge 
catalyst system because of the fixed structure. The 
angle Cp1-Ti-Cp2 was decreased with complexing 
ethylene, ethylene could close easily to the catalyst 
active and formed a stable complex because the steric 
hindrance was reduced.

The steric hindrance of alkyl substituents on Cp has 
a great influence on the structure of ethylene/catalyst 
active center complex. The optimized structural 
geometric parameters of the complex indicated that 
the steric hindrance was the smallest, the distance 
between ethylene and the catalyst active center Ti4+ 
cation was the closest and the complex was the closest. 
The distance between carbon atom on ethylene and 
Ti4+ cation was 2.981 Å when there was no substituent 
on the Cp group in the [Cp2(R)TiCH3]

+ active center. 
When substituents on Cp were Me- and iPr-, the 
Mulliken charge of the catalyst active center increased, 
which was more conducive to complex with ethylene 
because of the large steric hindrance of substituents. 
The distance between carbon atom on ethylene and 
Ti4+ cation increased to 3.036 Å and 3.030 Å, and the 
complex was relatively decentralization. The C=C 
bond length in ethylene was 1.349 Å when ethylene 

complexed with [Cp2TiCH3]
+, whereas the C=C bond 

length in the complex system was 1.348 Å when Cp 
had substituents. It indicated that the steric hindrance 
of substituents had an impact on the stability of the 
complex system. The smaller the steric hindrance, 
the substituents are the more conducive to ethylene 
complexation. The structural changes of the complex 
in the bridging system were also studied. The rotation 
and movement of the bridging system were limited 
because methylene connected two Cp groups and 
fixed its structure. The angel Cp1-Ti-Cp2 was small, 
and the angel between two Cps was large, which was 
conducive to ethylene approaching the active center 
Ti4+ cation. The optimized structural parameters of 
the active center complex system in the bridge system 
indicated that the substituent had no significant effect 
on the volume of the substituent. 

In order to study the stability of the complex system, 
the complex energies were calculated. Table 3 shows 
the complex energy of non-bridge [Cp2(R)TiCH3]

+ and 
bridge [NCp2(R)TiCH3]

+ with ethylene. The results 
indicated that the ethylene complex process was an 
exothermic reaction, and the heat released decreased 
with increasing the volume of substituents. The steric 
hindrance effect of substituents was particularly 
significant in the non-bridge [Cp2(R)TiCH3]

+ system. 
The complex energy was −25.06 kJ/mol when there was 
no substituent on Cp, whereas their complex energies 
were −24.63 kJ/mol and −18.28 kJ/mol when Cp had 
methyl and isopropyl groups. The steric hindrance 
has little effect on its complex energy in the bridge 
[NCp2(R)TiCH3]

+  system. When the substituents were 
H-, CH3- and iPr- in the bridge [NCp2(R)TiCH3]

+, the 
complex energies were −26.64 kJ/mol, −25.341 kJ/
mol and −24.03 kJ/mol, respectively. Compared with 
the non-bridge structure, the complex energy of bridge 
active center was larger and the complex was more 
stable. Farther, the larger the volume of alkyl group 

Table 2. Structural parameters of the active center and Mulliken charge of Ti in catalyst active center/ethylene complex.

Active center Cp1-Ti-Cp2(°) d(Cp1-Ti) (Å) d(Cp2-Ti) (Å) d(Ti-CH3) (Å) QTi(e)

[Cp2TiCH3]+

[Cp2(Me)TiCH3]+

[Cp2(iPr)TiCH3]+

[NCp2TiCH3]+

[NCp2(Me)TiCH3]+

[NCp2(iPr)TiCH3]+

134.584
134.093
133.911
120.913
121.214
121.592

2.119
2.133
2.15
2.11

2.118
2.136

2.12
2.125
2.127
2.109
2.108
2.113

2.18
2.171
2.17

2.159
2.157
2.158

0.653
0.668
0.674
0.661
0.671
0.672
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on Cp, the smaller the complex energy and the more 
unstable the complex system.

Formation process of transition state in ethylene 
polymerization
According to Cossee-Arlman mechanism, ethylene 
polymerization includes three steps: (1) Ethylene is 
close to the active center to form a complex; (2) The 
complex reacts to form a four-ring transition state; (3) 
Ethylene is inserted into the Ti-CH3 active center to 
form the product. The structures during the formation 
of reaction transition state and energies were studied. 
Figure 4 and Table 4 show the optimized structure and 
the geometric parameters of the transition state. The 
elongation of C=C bond in ethylene was close to the 
C-C bond in the formation process of transition state, 

ethylene was further close to the active center of the 
catalyst, the distance from the active center Ti4+ cation 
was close to the chemical bond length, the bonding 
between the active center Ti4+ cation and ethylene was 
enhanced, and the bonding between Cp and methyl 
was weakened, then the catalyst active center formed a 
four rings transition state with ethylene. The Mulliken 
charge of Ti4+ cations decreased due to the flow of π 
electrons on ethylene to the d orbital of Ti4+ cation 
in the active center. The angel Cp1-Ti-Cp2 decreased 
from about 134° of the active center to about 130 ° 
in the transition state. In the bridge structure, the 
angle Cp1-Ti-Cp2 changed significantly because of 
the fixed structure, and the R- in the transition state 
of [NCp2(R)TiCH3]

+ system was H-, CH3- and iPr-, 
and the angle Cp1-Ti-Cp2 was 96.4°, 115.7° and 91.9°, 
respectively. The results indicated that the angle Cp1-
Ti-Cp2 decreased during the formation of transition 
state, which was conducive to reducing the steric 
hindrance, making ethylene as close to the active 
center as possible and forming chemical bonds. In this 
[NCp2 (CH3) TiCH3]

+ active center, the angle Cp1-Ti-
Cp2 was the smallest because the Ti-CH3 bond was 
extended to 4.123 Å during the insertion of ethylene 
into the catalyst active center. The Ti-CH3 bond was 
almost completely broken, and ethylene was directly 
inserted into the Ti-CH3 bond.

The steric hindrance of alkyl substituent on Cp group 
had a great influence on the structure of transition 
state. The steric effect of substituents was particularly 
significant in the non-bridge [Cp2(R)TiCH3]

+ catalytic 
system. The optimized structure of the transition state 
showed that the alkyl substituent on the Cp could 
hinder the insertion of ethylene during the insertion 
of ethylene into the Ti-CH3 bond of the catalyst active 
center, and the structure of the catalyst active center 
was changed in order to reduce the hindrance. The 
changes of catalyst active center structure included 
the decreased angel Cp1-Ti-Cp2, and the increased 
the distance of Ti4+-Cp and Ti4+-CH3. The structure of 
transition state was slightly different with substituent 
because methylene bridging fixes the structure of the 
catalyst active center in the bridge [NCp2(R)TiCH3]

+ 

catalytic system. The distance between the ethylene 
and the catalyst active center was longer than that of 
the non-bridge catalyst active center in its transition 

Figure 3. Optimized structure of catalyst active center and 

ethylene complex.

Table 3. Complex energy between catalyst active center 
and ethylene (kJ/mol).

R H CH3 iPr

[Cp2(R)TiCH3]+

[NCp2(R)TiCH3]+

− 25.06
− 26.64

− 24.63
− 25.31

−18.28
− 24.03



40

Substituent effect of Cp2TiCl2 catalyst for ethylene polymerization: A DFT study

Polyolefins Journal, Vol. 10, No. 1 (2023)

IPPI

state with ethylene because the bridging restricts the 
free rotation and movement of Cp. The proximity 
of ethylene to the active center of the catalyst was 
hindered. Here, the steric hindrance effect of Cp 
substituents was relatively significant. When the 
substituents R- were H- and iPr-, respectively, their 
Cp1-Ti-Cp2 were basically the same, and the distance 
between ethylene and the active center increased 
with increasing the steric hindrance. However, when 

R- is Me-, the steric hindrance between ethylene and 
the active center was weakened due to the elongate 
bond of Ti-CH3. Therefore, Cp1-Ti-Cp2 was changed a 
little, and the distance between ethylene and the active 
center of the catalyst was the smallest.

Moreover, the reaction heats and activation 
energies of ethylene insertion into the active center 
of the catalyst were calculated, which are listed in 
Table 5. The results indicated that the spatial effect 
of substituents had a great influence on the catalyst 
ethylene polymerization process. The activation 
energy of ethylene polymerization process increased 
with increasing substituent volume, which indicated 
that the substituent volume was not conducive to 
the insertion of ethylene into the active center of 
the catalyst. The steric effect of substituents was 
more obvious in the non-bridge [Cp2(R)TiCH3]

+ 

catalytic system. The reaction exothermic decreased 
significantly and the activation energy increased 
significantly with the increasing substituent volume. 
The reaction heat increased slightly with increasing 
the steric hindrance of the substituent in the bridge 
[NCp2(R)TiCH3]

+ catalytic system. However, 
the activation energy increased obviously, which 
indicated that the steric hindrance of the substituent 
was unfavorable for ethylene to insert into the Ti-CH3 
bond of the active center. The obtained results are 
consistent with titanium tris(amino)phosphinimide 
complexes reported in literature[38].

Table 4. Structural parameters of catalyst active center and Mulliken charge of Ti in transition state of ethylene polymerization.

Active center Cp1-Ti-Cp2 (º) d(Cp1-Ti) (Å) d(Cp2-Ti) (Å) d(Ti-CH3) (Å) QTi(e)
[Cp2TiCH3]+

[Cp2(Me)TiCH3]+

[Cp2(iPr)TiCH3]+

[NCp2TiCH3]+

[NCp2(Me)TiCH3]+

[NCp2(iPr)TiCH3]+

130.104
129.037
130.04
96.409
115.669
91.857

2.322
2.262
2.687
2.616
2.34

2.448

2.337
2.287
2.37

2.723
2.215
2.392

3.952
3.723
3.985
2.858
4.123
3.627

0.605
0.605
0.651
0.69

0.491
0.517

Figure 4. Transition state structure of active center for 
ethylene polymerization.

Table 5. Reaction heat and activation energy in transition 
state of ethylene polymerization.

Active center ΔE(kJ/mol) Eact（kJ/mol）
[Cp2TiCH3]+

[Cp2(Me)TiCH3]+

[Cp2(iPr)TiCH3]+

[NCp2TiCH3]+

[NCp2(Me)TiCH3]+

[NCp2(iPr)TiCH3]+

− 61.8
− 35.3
− 26.1
− 32.0
− 32.2
− 35.8

71.2
85.1
98.3
78.2
81.5
94.8
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CONCLUSION

The effect of steric hindrance of alkyl substituents 
on Cp during ethylene polymerization by typical 
metallocene catalyst Cp2TiCl2 was studied by DFT. 
Two types of catalyst active centers with non-bridge 
[Cp2(R)TiCH3]

+ and bridge [NCp2(R)TiCH3]
+ (R = 

H, Me, iPr) structures were used. The mechanisms 
of ethylene polymerization were studied in catalyst 
active center with different alkyl substituents. The 
results indicated that the substituent steric hindrance 
was unfavorable to complex ethylene with catalyst 
active center and ethylene polymerization. The bigger 
alkyl substituent, the greater the activation energy of 
ethylene insertion into catalyst active center and the 
more difficult is ethylene polymerization. Therefore, 
properties of metallocene catalysts could be regulated 
by the substituent on Cp.
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