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ABSTRACT

The research was carried out in a large-scale olefin process to see how different variables affect ethylene yield 
in an actual fluctuating plant condition. Regression analysis was adopted using Minitab Software Version 

18 to create a reliable ethylene yield model. Regression analysis is a robust, practical, and advanced tool that is 
used in various applications as an alternative to the complex, expensive, and restricted simulation software that 
is specifically designed for the olefin process. The 1688 data taken from the studied plant underwent outliers and 
residuals removal utilizing normality and stability tools in Minitab for the analysis to be conducted as normal data. 
The Regression was conducted a few times until all variables satisfactorily met the multicollinearity criteria with 
Variance Inflation Factor (VIF) <10 and 95% confidence level criteria with P-Value <0.05. The final Regression 
model established 4 significant variables which were Hearth Burner Flow, Integral Burner Flow, Super High-
Pressure Steam (SHP) Temperature, and Naphtha Feed Flow by factors of -0.001266, 0.04515, -0.0795, and 
0.2105, respectively. The maximum ethylene yield was calculated at 31.75% using Response Optimizer with 
the recommended operating conditions at 9908.50 kg/h Hearth Burner Flow, 600.39 kg/h Integral Burner Flow, 
494.65°C SHP Temperature, and 63.50 t/h Naphtha Feed Flow. Polyolefins J (2021) 8: 105-113

Keywords: Olefin yield; steam cracker furnace; optimization; statistical analysis; Minitab.

ORIGINAL PAPER

INTRODUCTION

The research was carried out in a newly commissioned 
olefin plant that used naphtha liquid as a feedstock to 
the steam cracker furnace. The plant was designed to 
produce 1,100 KTA of polymer grade ethylene through 
pyrolysis cracking in a steam cracker furnace. It is 
challenging to undertake the study in real plant scale 
conditions due to the typical process fluctuation [1-3] 

in a large application. This is due to various controlled 
and uncontrolled variables continuously affecting 
the process, especially resulted from feedstock 
impurities, utility reliability and influence of upstream/
downstream plant performance. The studied plant was 
constructed at a mega-scale petroleum complex with 
full integration to the upstream and downstream plant 
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where the process fluctuation is frequent and cannot 
be fully prevented.

Pyrolysis cracking involves a high-temperature 
firing in the steam cracker furnace [4, 5] that allows 
hydrocarbon bonds to break and generates the smaller 
and unsaturated molecule [6, 7] of olefin products like 
ethylene, propylene and butylene. Olefin plants that 
use thermal cracking technology are unique in the 
way that they are typically regarded as the heart of the 
petrochemical industry [8, 9], and their performances 
signify the growth of the petrochemical industry in the 
country [10].

Lummus, Linde, Stone and Webster, M.W. Kellogs, 
Technip [11, 12], and Sinopec [13, 14] are examples of 
the established Olefin Licensors which having mature, 
reliable, and proven olefin technologies. Olefin 
Licensors own the proprietary steam cracker furnace 
design and usually offer their simulation software such 
as SPYRO [15, 16], SHAHAB [17], CRACKER [18, 
19], CHEMKIN [20-22], and CRACKSIM [23-25] to 
the olefin plants worldwide. Although these software 
are undeniably robust, they are more complex, 
expensive, and also restricted in some applications to 
safeguard the proprietary design by Olefin Licensors.

The generation of ethylene from pyrolysis cracking 
in the Short Residence Time (SRT) VII furnace is 
one of the most promising technologies currently 
available in the market [26, 27]. Figure 1 portrays the 
configuration of the studied SRT VII and its auxiliaries 
used for the study.

The naphtha feed enters the furnace through the 
first bank of the convection section, where it will 

combine with Dilution Steam (DS) to increase 
olefin selectivity by lowering the partial pressure of 
naphtha feed [28, 29]. This mixing initiated to favor 
a better ethylene yield from the reversible reaction 
according to Le Chatelier's Principles [30, 31]. 
The initial dynamic equilibrium is broken by the 
introduction of DS to the naphtha feed. The place of 
equilibrium changes to compensate for the adjustment 
and therefore, reestablishment of equilibrium starts. 
When a chemical reaction is at equilibrium and a 
change occurs, the equilibrium moves in the opposite 
direction to compensate for the change following the 
Le Chatelier’s Principle.

This mixed feed will then flow into the radiation  
section with the operated 1,050°C-1,180°C of Tube  
Metal Temperature (TMT) at radiant coils. This extreme 
temperature is essential to maximize the ethylene yield 
in the SRT VII. The cracked gas will then be sent  
to the downstream equipment for further quenching, 
compression, cooling and product separation.

The steam cracker furnace is one of the critical 
equipment in the olefin process [32] where its 
performance determines the yield and quality of 
ethylene produced [33]. This translates to the profit 
generation for the olefin plant. However, the rapid 
cracking of naphtha feed in the furnace coils will lead 
to the formation of coke over time and it cannot be 
avoided due to the extreme cracking temperature in 
the SRT VII. The decoke cycle is therefore critical for 
removing hard coke from the furnace coil.

To ensure continuous ethylene generation [34] 
and sustainable normal cracking conditions [35] for 
the furnaces, a mixture of air and steam is used for 
decoke operation according to the scheduled period 
that is planned earlier by operations personnel. The 
mechanical link between Decoke Valve and Transfer 
Line Valve shown in Figure 1 is utilized for this 
purpose. Maintaining safe and stable operation [36, 
37] including during decoke cycle is crucial to ensure 
continuation of naphtha cracking in the SRT VII.

This study is significant in showing the result of 
robust Regression analysis in the actual large-scale 
olefin plant where process fluctuation is normally 
observed. The final Regression model is important 
to portray the actual olefin plant performance with 
consideration to the various fluctuating variables in 

Figure 1. SRT VII configuration with the selected 7 variables 
for the study.
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the large-scale olefin process. It also provides practical 
alternatives to the complex simulation software by 
Olefin Licensors that is normally applied in the Olefin 
plant. In summary, Regression analysis is easier, 
cheaper, and has no proprietary restrictions on the 
statistical software used.

EXPERIMENTAL

Equipment/Tools 
The study utilized 93 t/h of naphtha feed processing 
capacity of SRT VII furnace designed by Lummus 
Technology Heat Transfer (LTHT), United States.  
Process Information Management System (PIMS) 
Software, PI Process Book Version 2015 was used 
to collect plant data for the selected variables, and 
Minitab Software Version 18 was employed to perform 
the whole analysis.

Methodology
7 variables were chosen with consideration to the: 
a) major input/output control, b) firing intensity and 
c) main temperature parameters, as those were the 
most critical variables for the Steam Cracker Furnace 
operation. In this case, the input was Naphtha Feed, 
and the output was Ethylene Yield. The variables 
controlling the firing intensity to the furnace were 
Hearth Burner Flow and Integral Burner Flow. The 
main temperature parameters for the analysis were 
Super High Pressure (SHP) Flow, SHP Temperature, 
and Coil Outlet Temperature (COT). These 7 variables 
were also the most important parameters frequently 
observed in the studied plant to monitor the Ethylene 
Yield and therefore were selected into the Regression 
analysis for this study. 

The date for the study was set on the 24th of January 
2020, 1700 h to the 2nd of February 2020, 1200 h with 
an accumulated 211 h. The data was collected hourly 
(calculated average, time-weighted) from the PI Process 
Book. There was a total of 1,688 data points used for 
the analyses represented by 7 inputs and 1 output.

The Paraffins, Olefins, Naphtenes, Aromatics 
(PONA) compositions in the naphtha feed were 60.92 
vol%, 1.02%, 25.97%, and 12.09%, respectively, with 
the Initial Boiling Point (IBP) and Final Boiling Point 

(FBP) which were 34.1ºC and 166.1°C, respectively. 
The Reid Vapour Pressure (RVP) was 44.5 kPa. 
The naphtha feed specification was ensured not 
exceeding 5% of variance to ensure that the final 
model was representative of the constant naphtha feed 
specification throughout the study duration.

All 1,688 data were initially analyzed using 5 tools 
in Minitab Software Version 18 to determine the data 
normality and stability. The data stability was first 
verified using three different tools which were Box 
Plot, Run Chart and Individual-Moving Range (I-MR) 
Chart. The normality verification continued after the 
stability test completion using the Normality Plot and 
Graphical Summary. 

The normality distribution test followed symmetry 
around the mean and could be classified based on mean 
and standard deviation. It was important to ensure that 
the data were normal using the normality test before 
Regression analysis started. The stability test referred 
to the process that stayed stable during the study 
cycle, implying that the process produced consistent 
performance at all times. It plotted the data over time 
and used local dispersion measures to estimate within-
process variance, enabling it to detect deviations from 
natural process variation. Unstable processes could 
be non-normal, and non-normal processes could be 
stable. Both tests were therefore essential to ensure the 
data credibility in this continuous process condition.

The P-Value in both the stability and normality 
should be verified greater than 0.05 to continue 
with Regression analysis as normal data. If the 
P-Value provided by these tools was less than 0.05, 
the analysis would be conducted using Box-Cox 
data transformation. However, it was not intended 
to undergo data transformation in this study, and 
therefore it was necessary to pass both tests. P-Value 
higher than 0.05 is the worldwide recognized figure 
for the statistical analysis. Although the study was 
conducted in the fluctuating process condition, 0.05 
was also selected for this study to comfortably provide 
the 95% of confidence level for the final model. The 
low P-Value showed solid proof against the null 
hypothesis, as the null hypothesis had less than 5% 
chance of being right and the model was therefore 
established from the reliable and well-distributed data. 
However, there was no need to undergo the P-Value less 
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than 0.05 as per normal practices in the biotechnology 
field which often requires more sensitive analysis.

The Regression was repeated a few times, eliminating 
one variable at a time until all variables had a VIF 
of <10 and a P-Value of <0.05. The series of variable 
elimination began with the highest VIF value and 
continued until all variables had a VIF of 10 or less. 
In an ordinary least squares regression analysis, VIF 
measures the severity of multicollinearity that existed 
in the model. VIF >10 was not recommended [38] 
because it could influence the P-value and contributed 
to the inaccurate model. VIF <5 was also recommended 
[39] because it further reduced the multicollinearity 
in the Regression model. However, VIF <10 was 
adequate in this study due to the nature of analysis at 
the large-scale plant condition with numerous process 
variations.

After all remaining variables achieved VIF <10, 
the variable elimination continued for the variable 
with the highest P-Value until all variables achieved 
P-Values of 0.05 or less. Once both of VIF and 
P-Value criteria were met, the Residual elimination 
was performed on the most recent Regression model 
using the Fit and Diagnostic for Unusual Observation 
table. After removing all residues, the Regression was 
reconducted to all 7 variables. The same approach was 
reconducted to improve the model and to eliminate 
the insignificant variables that did not meet VIF and 
P-Value criteria. 

The scatterplot of input versus output of ethylene 
yield was drawn to see the normal distribution of 
the model and its R-Square. Finally, the Response 
Optimizer tool was also applied to the final model to 
predict the maximum value of ethylene yield with the 
significant process settings that can be accomplished 
in the studied plant.

RESULTS AND DISCUSSION

Table 1 shows the initial (1st) and final (7th) Regression 
analysis results, while Eq. 1 demonstrates the final 
equation model after the 7th Regression.

Y1 = 43.1 - 0.001266 (X1) + 0.04515 (X2) - 0.0795 (X3) + 0.2105 (X6)      (1)

 
The 1st Regression was conducted to establish the 
initial relation between all studied variables. The 
VIFs for all variables were successfully obtained at 
<5 in the 1st Regression and therefore no variable 
was eliminated from the initial Regression due to 
high VIF. The 2nd and 3rd Regression were conducted 
with the removal of variables with P-Value >0.05. 
The elimination started with X5 (P-Value: 0.378) and 
was followed by X4 (P-Value: 0.272). All remaining 
variables X1, X2, X3, X6, and X7 had successfully 
obtained P-Value <0.05 in the 3rd Regression with the 
R-Square observed at 70.58%. 

However, 19 residuals were still observed on the 
Fits and Diagnostic for Unusual Observations table. 
These residuals were therefore removed, and the 
4th Regression was reconducted to all variables to 
improve the model.

The 5th to 7th Regressions were conducted with 
the sequence of removal started from X4 (P-Value: 
0.517), X7 (P-Value: 0.311), and X5 (P-value: 0.097). 
The R-Square for the 7th Regression was observed at 
76.43% which is higher than the 3rd Regression by 
5.85%. Although all variables in the 3rd Regression 
were found at P-Value <0.05, removing the residuals 
from regression analysis significantly improved the 
model by 5.85% in the 7th Regression. 

Table 1 shows that all variables achieved the VIF 
of <5 since the initial Regression. This displayed 

Table 1. Initial and final Regression analysis for all variables.

Tag and Description Unit
Initial Regression (1st) Final Regression (7th)

Coef. P-Value VIF Coef. P-Value VIF

Constant -55.7 0.079 43.1 0.003

X1
X2
X3
X4
X5
X6
X7

Hearth Burner Flow
Integral Burner Flow
SHP Temperature
SHP Flow
Dilution Steam Flow
Naphtha Feed Flow
Coil Outlet Temp.

kg/h
kg/h
°C
t/h

kg/h
t/h
ºC

-0.001020
0.05169
-0.0435
-0.0310

-0.000117
0.1864
0.1030

0.000
0.000
0.025
0.252
0.378
0.000
0.011

4.67
1.42
2.30
2.33
1.04
3.16
1.47

-0.001266
0.04515
-0.0795

0.2105

0.000
0.000
0.003

0.000

4.88
1.83
1.53

3.54
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that very minimal multicollinearity relations existed 
between 7 identified variables used for the Regression 
analysis. It was also an indication of the good variable 
selection for the reliable final equation model.  

The final model built from the study is summarized 
in Table 2. Given that the analysis was performed in 
the actual large-scale plant where process variation 
was common, the R-Square value of 76.43% was 
excellent. It demonstrated 76.43% of the variability 
was considered in the final model. This value was also 
sufficient to justify the data variability, which was 
recommended at 75% or higher [40, 41].

Figure 2 shows the normality distribution of the Y1 
(Ethylene Yield) based on the input and output values. 
The high R-Square of 76.43% in the scatterplot 
portrayed the reliable input data in achieving the output 
from the final model. Although the trend showed that 
small data fell into the 30% - 31% range compared to 
the majority within the 28.5% - 29.5% range; it was 
acceptable as the study being conducted in the actual 
plant scale condition supported by the high R-Square 
at 76.43%. 

Figure 3 displays the Contour Plot for the significant 
variables in the final Regression model. The Y1 
(Ethylene Yield) was mapped with the prediction 

value of <28.5% – >30.5%. 
The relation between X2 (Integral Burner Flow) 

versus X1 (Hearth Burner Flow) had the greatest 
effect in achieving the highest Y1 (Ethylene Yield) 
at >30.5%. The higher X2 (Integral Burner Flow) 
reading combined with the lower X1 (Hearth Burner 
Flow) demonstrated the highest Y1 (Ethylene Yield) 
result with the biggest contour range of >30.5%. The 
relation of these two parameters was therefore critical 
to be observed by the studied plant to achieve the best 
Y1 (Ethylene Yield). Besides, X3 (SHP Temperature) 
versus X1 (Hearth Burner Flow) and X6 (Naphtha 
Feed Flow) versus X1 (Hearth Burner Flow) relations 
also displayed the existence of Y1 (Ethylene Yield) 
range at >30.5%.

Figure 3 also showed X3 (SHP Temperature) versus 
X2 (Integral Burner Flow), X6 (Naphtha Feed Flow) 

Table 2. Model summary.

S R-sq R-sq(adj) R-sq(pred)
0.205502 76.43% 75.85% 74.75%

Figure 2. Normal data distribution of input Y1 versus output Y1.

Figure 3. Contour plot of the relationship between significant variables in the final model in achieving Y1; X1, X2, X3, and X6.
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versus X2 (Integral Burner Flow), and X6 (Naphtha 
Feed Flow) versus X3 (SHP Temperature) relations 
were not much favor towards higher Y1 (Ethylene 
Yield). This was presented by no contour range 
observed at >30.5% of Y1 (Ethylene Yield) between 
these relations. 

The Surface Plot of significant variables in 
comparison to Y1 (Ethylene Yield) is shown in Figure 
4. This 3D Surface Plot is a three-dimensional graph 
that can be used to investigate desirable response 
values for two continuous variables centered on the 
model equation against Y1 (Ethylene Yield). The 
mean value for non-tested variables was held at 
10664.23 kg/h, 585.79 kg/h, 499.89ºC, and 61.26 t/h 
for X1 (Hearth Burner Flow), X2 (Integral Burner 
Flow), X3 (SHP Temperature), and X6 (Naphtha Feed 
Flow), respectively. 

From the Surface Plot in Figure 4 (a) and Figure 
4 (c), the lower value of X1 (Hearth Burner Flow) 
combined with the higher value of X2 (Integral 

Burner Flow), and X6 (Naphtha Feed Flow) resulted 
in higher Y1 (Ethylene Yield). The same combination 
was also observed in Figure 4 (f) between X3 (SHP 
Temperature) and X6 (Naphtha Feed Flow). These 
combinations were also critical to achieve the highest 
Y1 (Ethylene Yield) as the graph peak approaching 
the top of the Surface Plot.

Furthermore, lower X3 (SHP Temperature) 
combined with lower X1 (Hearth Burner Flow) or 
higher X2 (Integral Burner Flow) will also result in 
higher Y1 (Ethylene Yield) as shown in Figure 4 (b) 
and Figure 4 (d). Finally, Figure 4 (e) displays higher 
X2 (Integral Burner Flow) was required to be operated 
with the higher X6 (Naphtha Feed Flow) to establish 
the better Y1 (Ethylene Yield). In general, the Surface 
Plot helped to show the 3D relations between each 
variable as a guide to the Operations personnel to 
maximize the Y1 (Ethylene Yield). However, the 
2D Contour Plot in Figure 3 presented the operating 
condition to achieve the Y1 (Ethylene Yield) within 
the desired range in a simpler form.

Table 3 displays the Multiple Response Prediction, 
while Figure 5 depicts the use of the Response 
Optimizer to set the best operating condition to 
maximize Y1 (Ethylene Yield).

The Y1 (Ethylene Yield) was calculated to be 

Figure 4. Surface plot for Y1 against the identified variables in the final model; (a) X1 vs X2, (b) X1 vs X3, (c) X1 vs X6, (d) X2 
vs X3 (e) X2 vs X6 and (f) X3 vs X6.

Table 3. Response prediction for the final Regression model.

Response Fit SE Fit
Confidence

95% CI 95% PI

Y1 31.751 0.131
 (31.493,
32.009)

 (31.270,
32.232)

  (a)     (b)      (c)

  (d)     (e)      (f)
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maximized at 31.75% with the recommended 
operating conditions at 9,908.50 kg/h of Hearth Burner 
Flow, 600.39 kg/h of Integral Burner Flow, 494.65°C 
of SHP Temperature, and 63.50 t/h of Naphtha Feed 
Flow. The low and high range setting for significant 
variables in the Response Optimizer may also be used 
as a reference for the Operations personnel in the 
studied plant to maximize the Y1 (Ethylene Yield).

CONCLUSION

The final Regression model summarized 4 significant 
variables to maximize Ethylene Yield at 31.75% 
which were Hearth Burner Flow, Integral Burner 
Flow, SHP Temperature, and Naphtha Feed Flow, with 
the factor of -0.001266, 0.04515, -0.0795, and 0.2105, 
respectively. This study successfully closed the gaps 
for the easier and practical olefin yield evaluation 
adopting the Regression analysis as the alternative to 
the normally applied complex, expensive and restricted 
olefin simulation software. The model also proved 
reliable from the high R-Square at 76.43% regardless 
of the study being conducted in the fluctuating process 
conditions.
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Symbol and Abbreviation
COT Coil Outlet Temperature
DS Dilution Steam
FBP Final Boiling Point
I-MR Individual-Moving Range
IBP Initial Boiling Point
KTA Kilo Tonne Per Annum
LTHT Lummus Technology Heat Transfer
PIMS Process Information Management System
PONA Paraffins, Olefins, Napthenes, Aromatics
RVP Reid Vapor Pressure
SHP Super High Pressure
SRT Short Residence Time
TLE Transfer Line Exchanger
TMT Tube Metal Temperature
VIF Variance Inflation Factor
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