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ABSTRACT

Coordinative chain transfer polymerization (CCTP) has opened a new path for the development of novel
products like olefin block copolymers and chain-end functional polyolefins. However, conflicting results 

are frequently reported on the catalyst performance including activity and comonomer selectivity under CCTP 
conditions. Here we have selected two catalysts including rac-ethylenebis(1-η5-indenyl)zirconocene and bis(imino)
pyridine iron, with drastically different comonomer affinities. The effect of diethyl zinc as the chain transfer agent 
(CTA) on their individual performances is evaluated at different 1–hexene concentrations, in copolymerization with 
ethylene. Combined thermal fractionation and GPC results confirm that not all chains experience the reversible 
transfer reaction. Nevertheless, the metallocene catalyst shows twice activity and about 30% lower comonomer 
incorporation in the presence of CTA. Conversely, the late transition metal catalyst demonstrates lower activity 
and remains comonomer irresponsive. It could be concluded that, in addition to establishing a reversible transfer 
reaction, CTA affects the nature of active centers. This finding can help designing olefin copolymers with a more 
defined chemical composition based on CCTP reaction. Polyolefins J (2020) 7: 1-11
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INTRODUCTION

Precise control of the chain microstructure has been an 
enduring goal in polymerization reaction engineering. 
Key microstructural features of the copolymers, includ-
ing the molar mass and branching and more specifical-
ly chemical composition and their distributions, can be 
ideally controlled in living polymerization systems. In 
the last two decades, the living reaction characteristics 
have been introduced in the coordination polymeriza-

tion techniques based on different mechanisms [1, 2].
The catalyzed chain growth is a living coordination 

polymerization method, which is based on the revers-
ible transfer of the growing chains to a dormant state. In 
this mechanism, the majority of polymer chains reside 
on an inexpensive main-group metal and are not able to 
grow unless reversibly transferred to the transition met-
al catalyst [3, 4]. For instance, bis(imino)pyridine iron 
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complex is shown to perform catalyzed chain growth of 
ethylene on diethyl zinc as the reversible chain transfer 
agent (CTA) [5, 6]. Consequently, a Poisson distribu-
tion of chain length was achieved by fast and reversible 
transfer of growing chains between iron and zinc metal 
centers [5]. New olefin block copolymers (OBCs) were 
introduced, on the basis of this reaction, by simultane-
ous application of two catalysts with drastically differ-
ent comonomer affinities in copolymerization of eth-
ylene and 1–octane [7, 8]. In this reaction pathway, a 
growing chain has the chance to be transferred to the 
CTA and to be cross-shuttled to the other catalyst and 
produce segments with different comonomer contents 
(note that shuttling back to the same catalyst just ex-
tends the length of the current block). Therefore, such 
OBCs are composed of crystalline polyethylene block 
and amorphous copolymer segments [9-13]. The other 
notable outcome of the catalyzed chain growth is the 
synthesis of chain-end functional polyolefins. The 
highly reactive alkyl–metal bond at the chain end can 
be transformed into different functionalities, to provide 
olefinic building blocks for the production of block co-
polymers [14-16].

Unfortunately, not all transition metal catalysts can 
perform catalyzed chain growth in combination with 
every main-group metal alkyl [6, 17]. For instance, re-
placing the alkyl groups of diethyl zinc with methyl, 
in combination with bis(imino)pyridine iron complex, 
leads to a broader distribution of chain lengths, and the 
use of bulkier groups like tolyl or phenyl shows evi-
dences of irreversible chain transfer, and even no chain 
transfer reactions, respectively [6]. The difficulty en-
countered in finding a good match between polymer-
ization catalysts and CTAs has hampered development 
of OBCs based on new catalytic systems [7]. Only 
some general guidelines can be drawn for finding the 
matched catalytic systems, based on the limited avail-
able experimental data and theoretical investigations [7, 
17-19]. However, even in such matched systems, still 
much less is known about the effect of reversible chain 
transfer reaction on the distinct performance of catalysts 
[20, 21]. The situation is even more complicated for the 
production of OBCs in the presence of two different 
catalysts [3, 6, 17, 22, 23]. The complication is ampli-
fied in batch reaction conditions, where the relatively 
different consumption rates of the two catalysts alter 

the instantaneous feed composition, as well [24-26]. 
However, the available kinetic models for individuall 
[24, 27] or binary [10, 11, 25, 28, 29] catalytic systems 
are built based on the independent performance of indi-
vidual catalysts in the absence of CTA, which of course 
results in discrepancies between the predictions and the 
experimental data [17, 30]

Using the terminal model, Zhang et al. have shown 
that the presence of CTA has no impact on the compo-
sition of active centers in a single catalyst copolymer-
ization reaction, and thus, Mayo–Lewis equation is 
valid [28]. However, experimental records from ethyl-
ene/norbornene [31] and styrene/isoprene [32-34] co-
ordinative chain transfer copolymerizations (CCTP) 
have shown that depending on the utilized catalytic 
system, introducing CTA can significantly affect the 
chemical composition of the final product [35]. The 
outcome of CCTP using a binary catalytic system can-
not be predicted on the basis of their individual per-
formances, likewise. Surprisingly, copolymerization 
of styrene/isoprene, in a binary catalytic system, has 
revealed that incorporation of styrene is significantly 
higher, both in the hard and in the soft blocks, com-
pared to the case where single catalysts are used at the 
same feed composition [36]. 

Consequently, deviations from the theoretical ex-
pectations mainly stem from the modifications of the 
polymerization catalyst in presence of CTA and not 
from kinetic aspects. There are limited studies that 
highlight and explain such inconsistencies [20]. Spe-
cifically, reports on the interplay of reversible chain 
transfer reaction and the comonomer selectivity of the 
catalysts in olefin copolymerization are limited [18]. 
In this work, we have selected two catalysts with re-
markably different comonomer affinities and studied 
their performances in the presence of varying amounts 
of CTA. Our results confirm that CTA indeed affects 
catalyst performances in terms of activity and como-
nomer selectivity, but to different extents.

EXPERIMENTAL

Materials 
Methylaluminoxane (MAO, 10 wt% solution in tol-
uene), diethylzinc solution (ZnEt2, 1 M in hexane), 
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and ansa-ethylenebis(1-η5-indenyl)zirconium dichlo-
ride (Scheme 1a) are purchased from Sigma-Aldrich. 
Aniline is purchased from Merck and vacuum dis-
tilled before use. 2,6-Diacetylpyridine (purity>99%) 
is prepared from Acros. The bis(imino)pyridine iron 
complex (Scheme 1b) is synthesized according to the 
previous reports [37]. Toluene is refluxed and distilled 
over sodium wire before use and kept over 4Å/13X 
activated molecular sieves. 

Polymerization
Ethylene/1–hexene copolymerization reactions are 
conducted in a 200 mL stainless steel Buchi reactor, 
using toluene as the solvent. The reactor is purged 
with nitrogen at 90°C for 2 hours prior to each reac-
tion. Dried toluene and predetermined amount of co-
monomer are introduced under nitrogen atmosphere, 
and catalyst system is transferred in the following or-
der: MAO is introduced as the main scavenger and 
cocatalyst, followed by ZnEt2 as CTA, if needed, and 
finally the catalyst solution is injected via a syringe. 
The reactor is saturated with ethylene to the desired 
pressure, and the reaction starts and proceeds for 30 
minutes by mixing. Ethylene consumption is compen-
sated using a mass flow meter to keep the pressure 
constant and the consumption rate is recorded. Finally, 
the reactor is evacuated, and the product is precipi-
tated in acidic methanol and vacuum dried. 

Characterization
High temperature Gel Permeation Chromatography 
(GPC, PL-220) coupled with two refractive index and 
light scattering detectors, is used for determination of 
molar mass distributions (MMDs) using 1,2,4-trichlo-
robenzene at 150°C as solvent flowing at the rate of 1 
mL min-1. A universal calibration curve is constructed 
using 12 standard polystyrene samples (PL) covering 
molar mass range of 1×103-6×106 g mol-1 to determine 
the average molecular weights and polydispersity in-
dices (PDI).

Differential Scanning Calorimetry (DSC) is car-
ried out using Mettler-Toledo apparatus 823e Module, 
interfaced to Star E 9.01 software (sensor FRS5) at 
the rate of 10°C min-1. Samples are heated from room 
temperature to 160°C and remained for 10 min for 
erasing the thermal history, followed by cooling to 

0°C and heating to 160°C using the same rate. Melting 
temperature and crystallinities are recorded according 
to the results of the final step. 

Successive Self-nucleation and Annealing (SSA) 
analysis is performed on the same DSC apparatus 
at the rate of 10°C min-1. Samples are first heated to 
160°C, maintained for 10 min, and cooled to 25°C.  
Subsequently, samples are heated to the first self-nu-
cleation temperature (Ts1, 145°C), kept for 10 min, and 
cooled down to 25°C. The successive self-nucleation 
is achieved by repeatedly heating to the next self-nu-
cleation temperature steps, and cooling to 25°C. The 
temperatures were 6°C distant from each other. Af-
ter covering the temperature range between 145 and 
38°C, the final heating ramp from 25 up to 160°C is 
applied to collect all melting endotherms. 
13C NMR measurements are carried out by dissolving 
about 80 mg of polymer in 0.7 mL of benzene-d6 and 
1,3,5-trichlorobenzene (20% v/v). The spectra are re-
corded using Bruker NMR AVANCE400 spectrometer 
operating at 100°C, and methylene sequences chemi-
cal shift in 30.00 ppm is used as the internal chemical 
shift reference. The applied measurement conditions 
are as follows: 5 mm probe, 90˚ pulse angle, acquisi-
tion time 1.5 s, delay time 4.0 s, about 17000 scans or 
5 hours measurement.

RESULTS AND DISCUSSION

Our investigation is based on two sets of ethylene/1–
hexene copolymerization reactions, using two differ-
ent catalysts, at varying levels of 1–hexene feed ratios. 
We have chosen catalysts with remarkably different 
comonomer affinities. Both catalysts are already prov-
en to be capable of performing catalyzed chain growth 
in combination with ZnEt2 [5, 6, 17, 38]. Therefore, 
they have the potential to be used together in a binary 
catalytic system for production of new block copoly-
mers. Accordingly, we have utilized similar reaction 
conditions, which simplify the comparison of their in-
dividual performances and provide more insights for 
studying their simultaneous application.

The first catalyst, rac-ethylene bis(1-η5-indenyl)zir-
conium dichloride metallocene (Scheme 1a), hereaf-
ter named Zr catalyst, is distinguished for the forma-
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tion of linear polyethylene chains in a CCTP reaction 
[17]. Due to the presence of the ethylene bridge, this 
catalyst has an open angle for the incorporation of co-
monomers like α-olefins [39]. The second late transi-
tion metal catalyst, bis(imino)pyridine iron dichloride 
(Scheme 1b), hereafter named Fe catalyst, can afford 
linear polyethylene chains with broad molar mass dis-
tribution, comparable to Ziegler-Natta catalysts [40]. 
The presence of bulky substitutes on the ortho-posi-
tion of the aryl groups locks them orthogonal to the 
N-N-N plane, and decreases the frequency of chain 
transfer reactions, which leads to a high molar mass 
[41]. Due to the aforementioned planar structure, this 
catalyst has a very low tendency to incorporate bulky 
comonomers [41].

In the utilized reaction conditions, both catalysts 
have reported to provide chains with lower molar 
mass and PDI values in the presence of ZnEt2 [5, 6, 
17]. However, the effects of CTA on the comonomer 
selectivity of the catalysts are not studied. This unseen 
factor is very important in designing OBCs, which are 
produced by simultaneous application of two catalysts 
with different comonomer affinities. Since, the most 
important properties of OBCs are governed by their 
blocks compositions. For instance, the difference in 
the comonomer content of hard and soft blocks de-
termines the crystallization kinetics and the extent of 
mesophase separation [12, 13, 42]. Therefore, in this 
study, we focus on the effect of CTA on the comono-
mer selectivity of two catalysts with drastically differ-
ent comonomer selectivity, in separate reactions.

It is necessary to use the highest reaction temper-

ature to dissolve the growing chains in the reaction 
medium and establish an effective reversible transfer 
reaction [16]. Both catalysts have already shown liv-
ing reaction features at room temperature [5, 6, 17, 
38]. We further increase the reaction temperature to 
50°C to prolong the extent of reversible chain trans-
fer reaction and still have adequate reactivity for both 
catalysts. Higher reaction temperature is favored for 
the Zr catalyst; however, it significantly hampers the 
activity of the Fe catalyst [41, 43]. The synthesized 
samples and other reaction conditions are explained 
in Table 1.

Samples are coded as “CatXHY”, where Cat takes 
Zr or Fe, X stands for the [CTA]/[Cat] molar ratio and 
Y determines the amount of utilized 1–hexene como-
nomer in mL. After preliminary tests to find the over-
lap of the best operating conditions for both catalysts, 
the effect of [CTA]/[Cat] molar ratio and comonomer 
content is studied as outlined in Table 1.

The reaction yield is one of the most important 
practical properties of a catalytic system. The effect 
of reactant concentrations on the catalytic activities of 
the Zr and Fe catalysts are displayed in Figure 1. The 
activity of the metallocene catalyst increases by both 
the comonomer and the CTA concentrations (main 
plot, check Run 9 in Table 1 for the effect of CTA 
concentration, which is not shown in Figure 1). The 
amplification of the catalyst activity in ethylene po-
lymerization upon introduction of different α-olefin 
comonomers, has been frequently attributed to the 
reduction in the formation of the relatively stable 
metal–ethyl intermediate [44-46]. The introduction 
of ZnEt2 in ethylene/1–hexene copolymerization, us-
ing the same Zr catalyst, has been reported to result in 
a two-fold increase of catalyst activity, in agreement 
with our results [47]. ZnEt2 is very reactive towards 
electron donating compounds like moisture, O2 or 
CO2. The increase in activity can be therefore due to 
the scavenging effect of the CTA, but the exact reason 
is not clear.

Conversely, the activity of the Fe catalyst decreases 
both by the comonomer concentration and by the intro-
duction of CTA (inset plot, check Run 16 in Table 1 for 
the effect of CTA concentration, which is not shown in 
Figure 1). By introduction of the comonomer, the rela-
tive concentration of monomer decreases in the reac-

Scheme 1. Structure of the utilized catalysts: (a) rac-
ethylenebis(1-η5-Indenyl)zirconium dichloride and (b) 
bis(imino)pyridine iron dichloride.
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tion medium, and since the Fe catalyst has no reactiv-
ity towards the 1–hexene; the overall yield decreases at 
higher comonomer levels. Decrease of catalyst activity 
in presence of CTA could be related to the excessive 
complexation of main-group metal and formation of 
relatively stable bimetallic complex with the catalyst. 
These stable species have low tendency toward the re-
verse de-complexation from the active center and there-
fore reduce the chain growth [3, 6, 47]

Comonomer incorporation has a drastic effect on the 
thermal properties of ethylene/α-olefin copolymers 
[48]. The melting temperature and the extent of crys-
tallinity are decreasing functions of the comonomer 
content [49]. These longstanding correlations have 
been frequently used for indirect determination of co-
monomer content based on thermal properties of dif-
ferent ethylene/α-olefin random copolymers [48]. In 
this study, the crystallization decreases at higher co-
monomer concentrations, and by introduction of CTA, 
for the case of comonomer selective, Zr catalyst, as 
listed in Table 1. Figures 2a shows the corresponding 
melting endotherms before (main plot) and after (in-
set plot) the introduction of CTA. The ethylene homo-
polymer has a sharp melting peak above 130°C, while 
the random copolymers have broad melting peaks 
spreading from 40 to 80°C. The broad and weak peaks 
of random copolymers turn into noticeable bimodal 
peaks, and shift to higher temperatures, in presence of 

CTA. It could be qualitatively implied that CTA sig-
nificantly reduces the comonomer selectivity of the Zr 
catalyst. However, the bimodality of the melting peaks 
says that this effect is not similar for all chains. The 
obtained product is in fact a blend of random copoly-
mers with different chemical compositions. In the case 
of the Fe catalyst, however, the extent of crystallin-
ity does not depend on the comonomer concentration, 
with or without CTA, as listed in Table 1. All melting 

Table 1. Concentration of the components in ethylene/1–hexene copolymerizations using the individual catalyst systems and 
the corresponding activities and thermal properties.

Run Code Cat [CTA]/[Cat] 1–hexene (mL)
 Activity×10-6

(gPE [Cat]–1 atm–1 h–1)
Tm (°C) Xc (%)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Zr0H0
Zr0H3
Zr0H6
Zr0H12
Zr550H0
Zr550H3
Zr550H6
Zr550H12
Zr100H3
Fe0H0
Fe0H3
Fe0H6

Fe100H0
Fe100H3
Fe100H6
Fe550H3

Zr
Zr
Zr
Zr
Zr
Zr
Zr
Zr
Zr
Fe
Fe
Fe
Fe
Fe
Fe
Fe

0
0
0
0

550
550
550
550
100
0
0
0

100
100
100
550

0
3
6
12
0
3
6
12
3
0
3
6
0
3
6
3

774
1190
1812
2137
1979
2935
3640
4356
2650
667
476
420
184
257
300
130

133
-
-
-

132.5
102.7,114.4

98.4
110.4,116.2

nd
133.2
133

134.56
113.5,126.5
106.3,126.8
102.3,125.8

nd

59.1
9.5
1.9
0.9
72.1
46.4
36
2.9
nd

75.4
69.9
70.7
48.7
47.3
55.8
nd

Polymerization conditions: [Catalyst]= 3 μmol, Temperature: 50°C, Polymerization time: 30 min, Solvent: 80 mL of Toluene, Ethylene pressure: 
2 bar, [MAO]/[Cat]= 1000.

Figure 1. Effect of 1–hexene concentration on the activity, 
with and without CTA, for the Zr catalyst (main plot) and the 
Fe catalyst (inset plot). Polymerization conditions: [Cata-
lyst]= 3 μmol, temperature: 50°C, reaction time: 30 min, 
solvent: toluene (80 mL), ethylene pressure: 2 bar, [MAO]/
[Cat]= 1000.
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endotherms show a sharp peak above 130°C, in the 
absence of CTA, as shown in Figure 2b. On contrary, a 
second low-temperature peak appears upon introduc-
tion of CTA, even in the absence of any comonomer. 
The appearance of low temperature endotherm in the 
absence of comonomer could be related to the exces-
sive transfer to CTA and formation of low-molar mass 
chains. These chains are very short, [5, 43, 50] and 
therefore they have larger crystallization rate.

Successive Self-nucleation Analysis (SSA) is devel-
oped for segregation of ethylene/α-olefin copolymers, 
based on their comonomer content, by isothermal 
annealing. It has been widely used as a quantitative 
alternative for NMR and TREF, for determination of 

comonomer content [51-53]. SSA fractionation of the 
copolymers made at similar feed composition in pres-
ence and absence of CTA are compared for both cata-
lysts in Figure 3. The fractionated peaks are decon-
voluted based on the weighted summation of several 
Gaussian distributions. Details of the deconvolution 
method can be found elsewhere [48]. Sample Zr0H3, 
has several low-temperature melting peaks, due to the 
broad ethylene sequence lengths, as shown in Figure 
3a (main plot). Such short ethylene sequences have 
little crystallization tendencies, and therefore, the 
sharp peaks appearing in this region represent a sig-
nificant fraction of chains. This is quantitatively taken 
into account by normalizing the peak intensities with 
the crystallinity at each temperature step. According 
to Hosoda’s equations for melting temperature and 
crystallinity of ethylene/1–hexene copolymers [49], 
this sample contains 14.7 wt% of comonomer with 
dispersity index of 1.07 [48]. The low-temperature 
peaks significantly diminish upon the introduction 
of CTA, in sample Zr550H3, and new peaks appear 
around 100°C (inset plot). The calculated average co-
monomer content is around 8.3 wt% with dispersity 
index of 1.28. Therefore, the introduction of CTA has 
decreased the comonomer content more than 30%, 
and increased the heterogeneity of comonomer distri-
bution to the same extent. The broadening of comono-
mer distribution implies that not all chains are simi-
larly affected by the presence of CTA, as expected. 

On contrary, the SSA fractionation of Fe0H3 sample 
offers narrow melting peaks overlapping specially 
above 120°C. The calculated average comonomer con-
tent is not more than 1.3 wt%, which is below the sen-
sitivity of such indirect method [48]. The introduction 
of CTA, in sample Fe100H3, provides broad melting 
peaks below 120°C. These peaks could be originated 
from high comonomer incorporation, if the average 
molar mass was not drastically altered. However, Fe 
catalysts are prone to have multiple active centers, 
which respond differently to the presence of CTA [43, 
50, 54]. Therefore, the formation of low-molar mass 
chains due to excessive transfer to CTA is responsible 
for the low-temperature melting peaks, as follows.

As already explained, the decrease in molar mass 
and PDI values has been traditionally used as a sig-
nature of living polymerization behavior. However, 

Figure 2. Effect of comonomer concentration on the melting 
endotherms of the copolymers made by the Zr catalyst (a) 
and the Fe catalyst (b) without (main plots) and with (inset 
plots) CTA.
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Hustad and coworkers have shown that the end-of-
batch molar mass data cannot approve the living po-
lymerization features, and the evolution of molar mass 
distribution during CCTP should be the basis of the 
judgement [25, 27]. They simply said, despite revers-
ibility of the transfer reaction, high PDI values are of-
ten obtained if the relative propagation and transfer 
rates are not optimized [27]. 

Accordingly, the molar mass distributions of the two 
copolymers made in presence and absence of CTA are 
compared for both catalysts in Figure 4. The Zr cata-
lyst shows about one decade decrease in molar mass 
upon introduction of CTA. However, in contrast to the 
expectations, the polydispersity index (PDI) increases 
from 2.11 to 2.6. Such PDI values are frequently re-

ported for metallocene-catalyzed polymerizations in 
batch conditions, and the ideal PDI value of 2 is rarely 
encountered [46]. Conversely, the Fe catalyst has a 
broad and bimodal MMD in the absence of CTA, in 
accordance with the previous reports [5, 50, 54]. The 
broad MMD has been attributed to presence of more 
than one active center [54]. Clearly, the molar mass of 
both polymer fractions decreases by the introduction 
of CTA, but to a different extent. The formation of the 
low-molar mass fraction is responsible for the appear-
ance of low-temperature melting endotherms in Figure 
3b. The GPC data, therefore, imply the establishment 
of a quasi-living polymerization, in agreement with 
SSA data. Simply put, at the utilized conditions, just 
a fraction of chains finds the chance to experience the 
reversible chain transfer reaction. Nevertheless, this 
fraction causes lower comonomer content and higher 
activity, for the case of Zr catalyst. Consequently, the 
effect of CTA on comonomer selectivity should be 
stronger at the optimized reaction conditions.

The thermal fractionation data, as shown in Figure 
3, are contaminated with excessive formation of low-
molar mass chains, specifically in the case of the Fe 
catalyst. To decouple the effect of comonomer incor-
poration from molar mass, the 13C NMR spectra of the 
samples are compared in Figures 5. The samples made 
by the Zr catalyst, especially in presence of CTA, pro-
vide higher intensities due to better solubility at the 
measurement conditions. The peak at 14 ppm reflects 
the methyl groups residing both at the end of the chain 

Figure 3. SSA fractionation of copolymers made by the Zr 
catalyst (a: Zr0H3 and Zr550H3) and the Fe catalyst (b: 
Fe0H3 and Fe100H3) without (main plots) and with (inset 
plots) CTA.

Figure 4. Effect of CTA on the molar mass distribution of co-
polymers made by the Zr and Fe catalysts with and without 
CTA.
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and at the end of the butyl pendant groups of the co-
monomer units. The chemical shift at 38 ppm only 
denotes the tertiary carbon atom at the branch junc-
tions. According to the obtained results, the comono-
mer content of the copolymers made by the Zr catalyst 
decreases from 12.54 wt% to 9.55 wt%, in presence 
of CTA. Consequently, steric hindrance due to the fre-
quent complexation of CTA affects the incorporation 
of bulkier comonomer more significantly. Evidently, 
the polymers produced by the Fe catalyst do not con-
tain any 1–hexene units, in the presence or the absence 
of CTA. Therefore, the low-molar mass fraction of 
polymers made in presence of CTA is responsible for 
the low-temperature melting peaks, regardless of co-
monomer concentration. 

Our results clearly suggest that CTA can affect the 
chemical composition in a CCTP reaction. In the 
classical free radical copolymerization, the chemical 
composition is determined based on the reactivity ra-
tios. Reactivity ratios are determined from homo- vs 
co-polymerization rate constants of each monomer. 
In a simple radical copolymerization, rate constants 
mostly depend on temperature. CTAs only regulate 
the chain length and do not compete with monomer 
incorporation and therefore cannot change the chemi-
cal composition. In coordination copolymerization, 
however, rate constants also depend on the type of 
the utilized catalyst. The CTA may not compete with 
monomer insertion reaction, but it can affect the active 

catalyst site, since its structure is very similar to the 
cocatalyst, and can therefore, interact with the cata-
lyst. Such a new complex (CAT/CTA) may have dif-
ferent comonomer selectivity, as it has been witnessed 
in our experimental data.

CONCLUSION

Designing new products based on CCTP reaction, like 
novel OBCs or chain-end functional polyolefins, is not 
possible unless understanding the exact effect of the re-
versible transfer reaction on the catalyst performance 
and the microstructural features of the product. The 
current kinetic models for such reactions are controver-
sially developed based on the individual performance of 
the catalysts, in the absence of CTA. We have investi-
gated the effect of CTA on the copolymerization of eth-
ylene and 1–hexene using two catalysts with drastically 
different comonomer selectivities. Our results confirm 
that, despite not all chains find the chance to experience 
the reversible transfer reaction; CTA has a significant 
effect on the catalyst performance. For the case of the 
utilized metallocene catalyst, the activity is twice and 
the comonomer selectivity is about 30% lower, in pres-
ence of CTA. While, at the same reaction conditions, the 
activity of the selected late transition metal catalyst de-
creases and the comonomer selectivity does not change. 
Consequently, there is interplay between the reversible 
transfer of growing chains and the catalyst performance 
specifically in terms of comonomer incorporation. Spe-
cifically, the steric hindrance due to the frequent com-
plexation of CTA seems to affect the incorporation of 
bulkier monomer to a greater extent. These results pro-
vide guidelines to correct the current approaches for 
modeling CCTP reaction, specifically using the binary 
catalytic systems. However, the obtained results, spe-
cifically the MMDs and activities, demonstrate that, at 
the reaction temperature that the performance of the uti-
lized catalysts may match, their simultaneous applica-
tion may not provide a useful OBC. 
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