Thermal behavior of ethylene/1-octene copolymer fractions at high temperatures: Effect of hexyl branch content

Abbas Kebritchi1, Mehdi Nekoomanesh1, Fereidoon Mohammadi1, Hossein Ali Khonakdar1, Udo Wagenknecht2

1Iran Polymer and Petrochemical Institute, 14965-115, Tehran, Iran
2Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany

Received: 6 September 2018, Accepted: 25 February 2019

ABSTRACT

In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fractionated to different fractions with homogenous hexyl branch (HB) content by preparative temperature rising elution fractionation (P-TREF) method. The P-TREF fractions were thermally analyzed via differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and evolved gas analysis (EGA). The P-TREF profile showed a short chain branch distribution (SCBD) of around 1.24. A linear relationship between P-TREF elution temperature (ET) and methylene sequence length (MSL) was presented. The DSC curves exhibited a monolithically increase in melting temperature \((T_m)\) as well as crystallization temperature \((T_c)\) with decreasing short chain branch (SCB) content. The calculated values of lamellae thickness suggested a linear function of SCB content and \(T_m\). The TGA studies of P-TREF fractions depicted a two-stage thermal degradation behavior: pre-degradation and main degradation stages. \(T_{\text{max}}\) for both pre-degradation and main degradation stages increased for fractions with less hexyl branch content. As an interesting point the pre-degradation stage was more intensified for more linear fractions. The concentration of main products was found to be affected by the content of hexyl branches using Py-GC-MS. Polyolefins J (2019) 6: 127-138

Keywords: Thermal behavior; ethylene/1-octene copolymer; hexyl branch content; thermal degradation.

INTRODUCTION

During the last 50 years, polymer science has advanced rapidly because of the major breakthroughs on polymer structure, properties and usage [1,2]. Polyethylene (PE) is the largest volume synthetic polymer in the world [3,4]. Linear low-density polyethylene (LLDPE) (copolymer of ethylene and \(\alpha\)-olefin) is a commercially important class of polyethylenes [5-7]. The ethylene copolymers made with solid, supported Ziegler–Natta (Z-N) catalysts are mixtures of chains that have different amounts of comonomer [3,8]. In contrast to the broad comonomer and molecular weight distributions of LLDPEs synthesized with multisite catalysts, the metallocene-based copolymers have narrow molecular weight distribution and homogeneous inter- and intra-
molecular distribution of comonomer units [9-11].

Copolymers of ethylene and α-olefin resins with homogeneous branching distribution behave as elastomers at high short-chain branching levels and act as typical thermoplastics at low short-chain branching levels [12]. Bensason et al. have examined the deformation of low-crystallinity ethylene-octene copolymers in uniaxial tension as a function of comonomer content and molecular weight [9]. Bensason et al. have also reported mechanical behavior of ethylene-octene copolymer prepared by Dow’s INSITETM constrained geometry catalyst technology (CGCT). They showed that as the comonomer content increases (from 2.8 to 13.6 mole%), the accompanying tensile behavior changes from necking and cold drawing in typical of a semicrystalline thermoplastic to uniform drawing and high recovery characteristic of an elastomer [13]. Brady and Thomas have worked on DSC characterization of LLDPE samples with approximately equal average branch content and different α-olefin types (1-betene, 1-hexene and 1-octene) revealed that, the α-transition temperature shifts to lower temperatures as branch content increases [14]. Mileva et al. have studied the role of crystallinity and crystal habit in tensile properties of ethylene copolymers [15].

It is well established that copolymer properties depend on the type, amount, and distribution of comonomer [3-16,19]. In ethylene-1-alkene copolymers every incorporation of a 1-alkene or α-olefin comonomer unit introduces a short chain branch in the polymer chain causing a disruption of the chain regularity [20]. It is noted that, the short chain branches (SCBs) in homogeneous ethylene copolymers have a predominant effect on crystallization and melting behaviors [21,22]. It is known that the crystallizability is affected by molecular weight, concentration of branches, and their distribution along the copolymer backbone [5]. Alamo and Mandelkern have reviewed the dependency of crystallization and melting parameters on comonomer content for different ethylene/α-olefin copolymers [23]. Zhang et al. have investigated the roles of the branch content and branch type in the copolymer crystallization by molecular dynamic (MD) simulations for two series of single copolymer chain models with precisely controlled methyl branching and with branches of different lengths. They showed that the branch content plays an important role in determining whether a single chain can form a lamellar structure or not. With the decreasing of the branch contents, more perfect lamellar structure is formed and the crystallinity of the polymer increases. Also they found that the branch point is always rejected to the folded surface of the lamellar structure as a defect, and the critical chain length for side-chain crystallization is 10 carbons [5].

Experimentally it is obtained that hexyl branches are not incorporated in the crystal lattice. Longer branches will not be incorporated, but side chain crystallization of the branches might occur [20]. It has been known that the melting temperatures of ethylene/α-olefin copolymers may vary by 10s of degrees Celsius when the comonomer type and overall amount are the same, suggesting the importance of comonomer distribution [3]. Ethylene copolymerization with fairly bulky α-olefin monomers like 1-octene results in hexyl branches that are excluded from the crystals, lowering the crystallinity and hence the physical density [10]. Most of the works have concentrated on the role of branching in low-temperature thermal behavior of ethylene/α-olefin copolymers, but the question rises what is branching role in high-temperature thermal behavior or thermal degradation?

In our previous works the effect of molecular weight on thermal degradation of polyolefins [24] as well as effect of ethyl and butyl branch content [25-28] on thermal and catalytic degradation was investigated in depth. In this study the effect of hexyl branch content on thermal degradation of ethylene/1-octene copolymer based on metallocene catalyst is examined which are usually ignored. To study accurately and to eliminate any other microstructural parameters; the ethylene/1-octene copolymer was fractionated to homogenous SCB content fractions using P-TREF technique which separates fractions based on SCB content only at low cooling rates not the molecular weight [29-31]. The role of SCB content on crystallization, melting, thermal degradation (P-TREF/TGA technique) and Py-GC-MS of each fraction is investigated in order to establish a correlation between low and high thermal behavior and the comonomer content of metallocene-based ethylene/1-octene copolymer.
EXPERIMENTAL

Material
"Parent polymer" was an ethylene/1-octene copolymer laboratory synthesized based on metallocene catalyst (Table 1). Molecular weight and polydispersity of parent LLDPE as well as P-TREF fractions were evaluated using a high-temperature size exclusion chromatography (SEC) apparatus PL-GPC 220 (Polymer Laboratories) at 150°C coupled with a multi-angle laser light scattering (MALLS) (Helleos II, Wyatt Technology Corp., USA) and a RI detector. The column set was two SEC columns 300×7.5 mm PLgel-Olexis. The eluent was 1,2,4-trichlorobenzene (TCB, Merck) stabilized with 0.02 wt% 2,6-di-tert-butyl-p-cresol (BHT) used with flow velocity of 1.0 ml/min (Figure 1). By considering of Figure 1 and Figure 2 a narrow molecular weight and short chain branch distribution type for the parent polymer can be concluded. Hexyl content of the parent polymer was calculated based on hydrogen-1 nuclear magnetic resonance (¹H NMR) and presented in Table 1.

Preparative temperature rising elution fractionation (P-TREF)
The home-made P-TREF consisted of a cylindrical column 7 cm in diameter and 40 cm in height. This column was packed by seeds with average diameter of 0.07 cm and submerged in an oil bath with a programmable thermostat that controlled the temperature of the bath. In each run a polymer solution with concentration of 1 wt.% of parent polymer in xylene was introduced into the column and heated at 140°C for 2 h and then, cooled to room temperature (30°C) slowly at a rate of -3 °C/h in order to crystallize the polymer on the seeds. The cooling rate is as slow as that the fractions are only separated base on SCB content not the molecular weight [25-27]. The bath temperature was subsequently increased and maintained for about 2 h at each fraction temperature to elute polymer chains of specific crystallizability completely by a stream of pure solvent (xylene). After dissolution of polymer chains, the fractions in solvent stream were treated with anti-solvent (acetone) to separate the polymer fractions. After separation, the prepared fractions were tested by subsequent thermal analysis including DSC, TGA, headspace-GC-MS and pyrolysis-GC-MS.

Differential scanning calorimetry (DSC)
Thermograms of different fractions were assessed by a Mettler differential scanning calorimetry (Toledo, Switzerland) under N₂ atmosphere, in which the samples were heated fast (200°C/min) to 180°C and maintained at this temperature for 5 min to erase any thermal history, and then cooled to room temperature (30°C) at a rate of -10°C/min. This was immediately followed by a second heating run (10°C/min) in order to detect a complete melting behavior of the samples.

Thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG)
The thermogravimetric analysis of different fractions was made using TGA Q 5000 of TA Instruments, under N₂ purge at 20 ml/min. The fractions experienced an isothermal condition for 5 min at room temperature and then heated up with a ramp at 10, 25, 50 and 100°C/min to 600°C. The samples were powder the with weight of about 10⁻¹³ mg.
Pyrolysis-gas chromatography-mass spectrometry (Pyrolysis-GC-MS)
A Pyroprobe pyrolyzer (5000 v. CDS Analytical, Inc., USA) was employed with platinum filament and interface CDS1500 at 250°C. The pyrolysis was based on step-wise at determined temperatures for different fractions and the pyrolysis time was 10 s for each temperature step; characterized by an Agilent Technologies GC (7890 A v) with inlet-temperature of 280°C, GC-oven temperature of 2 min at 50°C; then 12°C/min to 280°C and 10 min at 280°C. GC-column was HP-5MS (non-polar); 30 m × 250 μm ID (inner diameter) × 0.25 μm SD (layer thickness) and carrier gas was helium 1 ml/min. MSD (mass selective detector) 5975C inert XL EI/CI EI at 70 eV with mass scan range of 15-550.

Structural characterization
FTIR spectrometer (Vertex 80, Bruker, Germany) was used to characterize the parent polymer structure. The ATR spectra were recorded in the range of 4000–600 cm⁻¹, 100 scans each measurement with resolution of 2 cm⁻¹ using an MCT detector. The ¹H NMR spectra were recorded on a Bruker DRX 500 spectrometer operating at 500.13 MHz. C2D2Cl4 was employed as the solvent at 120°C. The spectra were referenced on the residual C2HDCl4 signal δ(1H) = 5.98 ppm.

RESULTS AND DISCUSSION
Investigation on the short chain branch distribution (SCBD)
Figure 2 represents the P-TREF profile of parent polymer. A narrow short chain branch distribution (SCBD) for the parent polymer can be acquired from Figure 2, which can be attributed to the metallocene type of catalyst used for polymer synthesis. It is well known that the molecular structure can be controlled by the catalyst [32] as well as metallocene catalysts with the single-site character of the active species [33] allow a perfect control over the chain microstructure [34] and generates polymers with narrow, monomodal Flory-size distributions [33].
and decreasing short chain branch content [37] by elution temperature.

By counting the carbon atoms and CH₃ groups for the ‘repeating unit’ in an ethylene/α-olefin molecule with the same methylene sequence length and neglecting the effect of end groups, the short chain branch content, SCB, per 1000 carbons, as a function of MSL can be estimated by Equation 3 [35], where i is the carbon number in the branch (e.g., for 1-octene comonomer, i is equal to 6).

\[
SCB = \frac{1000}{MSL + i + 1}
\]

(3)

The number average short chain branch content, \(\bar{SCB}_n \), and weight average short chain branch content, \(\bar{SCB}_w \), can be calculated based on the first and second moments of the SCB distributions, similar to the number and weight average molecular weight distributions, according to Equations 4 and 5:

\[
\bar{SCB}_n = \frac{\sum_{i=1}^{n} w_i \times SCB_i}{\sum_{i=1}^{n} w_i}
\]

(4)

\[
\bar{SCB}_w = \frac{\sum_{i=1}^{n} w_i \times SCB_i^2}{\sum_{i=1}^{n} w_i}
\]

(5)

Where \(w_i \) is the mass fraction of fraction i (obtained from P-TREF results), \(SCB_i \) is the SCB content of fraction i (calculated based on Equation 3) and n is the number of fractions (here n=4). Using Equations 4 and 5, \(\bar{SCB}_n \) and \(\bar{SCB}_w \) were calculated 8.826 and 10.911, respectively. Also in a similar way for calculation of MWD, the SCBD can be calculated using Equation 6:

\[
SCBD = \frac{\bar{SCB}_w}{\bar{SCB}_n}
\]

(6)

The amount of SCBD was calculated around 1.24. In comparison to the literature [35, 38], the obtained SCBD value can be assumed as a broad SCBD. According to the Gibbs–Thomson relationship (Equation 7), it is possible to determine the lamellae thickness (Lc) of different lamellae [39]:

\[
T_m = T_m^0 - \frac{1 - 2\delta_c}{\Delta H \times L_c}
\]

(7)

Where \(T_m (°K) \) is the observed melting point, \(T_m^0 (°K) \) is the equilibrium melting point of an infinite polyethylene crystal (414.5 °K), \(\Delta H \) is the enthalpy
Table 2. Detailed DSC data and the calculated parameters of P-TREF fractions.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Weight (g)</th>
<th>Melting onset temperature (°C)</th>
<th>Crystallization onset temperature (°C)</th>
<th>SCB (br/1000 C)</th>
<th>Lc (nm)</th>
<th>Xc (%)</th>
<th>MSL (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>0.829</td>
<td>103.7</td>
<td>96.3</td>
<td>11.5</td>
<td>6.7</td>
<td>29.2</td>
<td>79.7</td>
</tr>
<tr>
<td>70-75</td>
<td>0.497</td>
<td>103.9</td>
<td>98.1</td>
<td>10.9</td>
<td>7.1</td>
<td>30.7</td>
<td>85.2</td>
</tr>
<tr>
<td>75-80</td>
<td>0.430</td>
<td>107.2</td>
<td>102.5</td>
<td>10.3</td>
<td>7.4</td>
<td>36.7</td>
<td>90.0</td>
</tr>
<tr>
<td>80-85</td>
<td>0.177</td>
<td>110.1</td>
<td>105.6</td>
<td>9.0</td>
<td>8.4</td>
<td>36.2</td>
<td>103.9</td>
</tr>
<tr>
<td>30-140</td>
<td>2.378</td>
<td>98.4</td>
<td>101.5</td>
<td>8.8</td>
<td>8.6</td>
<td>34.0</td>
<td>107.3</td>
</tr>
</tbody>
</table>

1) SCB: Short chain branch content calculated by Equation 3.
2) Lc: Lamellae thickness calculated by Gibbs-Thomson relationship (Equation 7).
3) Xc: Crystallinity calculated by Equation 8.
4) MSL: Methylene sequence length calculated by Equation 1.

As it is acquired from the comparison of Equations 9 and 10, the crystallization temperature (Tc) is more sensitive to SCB content than melting temperature, because the magnitude of slope in Equation 10 is about 1.7 times larger than the slope in Equation 9. Equation 9 is analogous to equation \(T_m = -2.55 \times \text{(SCB)} + 132.54 \), proposed by Wiflong and Knight for P-TREF fractions of a metallocene-based ethylene-1-octene copolymer [42]. But in comparison with equation \(T_m = -2.176 \times \text{(SCB)} + 132.18 \), proposed by the same authors for P-TREF fractions of a Zeigler-Natta (Z-N)-based ethylene-1-octene copolymer, small variations can be observed especially at SCB coefficient. This difference may be attributed to the differences in type of the catalysts. As M. Zhang et al. showed the type of catalyst has a substantial effect on the coefficient of SCB [43].

Figure 5 shows the changes of SCB content and melting temperature versus lamellae thickness. As it can be observed in Figure 6, the SCB content is reduced through a linear correlation predicted by Equation 11 by Lc. Also by increasing the lamellae thickness the melting temperature is increased again by a linear
relationship predicted by Equation 12. By comparison of Equations 12 and 9 it can be concluded that T_m is more sensitive to lamellae thickness than short chain branch content, as the magnitude of coefficient for SCB in Equation 9 is smaller than the magnitude of coefficient L_c in Equation 12.

$$SCB = -1.5 \times (L_c) + 21.3 \quad (11)$$

$$T_m = 3.5 \times (L_c) + 87.8 \quad (12)$$

The interesting point is that for prediction of SCB changes against L_c for P-TREF fractions of both metallocene- and Ziegler-Natta-based ethylene-1-butene copolymers, exponential relationships are reported in the literature, e.g., $L_c = 7.14 \times \exp(-0.021 \times SCB)$ for metallocene [43] and $L_c = 20.482 \times \exp(-0.038 \times SCB)$ for Ziegler-Natta [44]. This may be originated from the low range of SCB content that is studied here. Because we have observed an exponential function, $L_c = 28.39 \times \exp(-0.129 \times SCB)$ for Phillips-based ethylene/1-hexene copolymer P-TREF fractions, in our previous work [45]. Therefore, it may be concluded that at low SCB contents the L_c is a linear function of SCB but at higher SCB contents it shows an exponential correlation.

Correlation between hexyl branch content and thermal degradation parameters

TGA/differential thermogravimetric (DTG) analysis was carried out on the parent polymer and its P-TREF fractions. The thermogravimetric data are provided in Table 3 and TGA/DTG curves are depicted in Figure 7. As it can be seen in Figure 7, a pre-degradation occurs at temperature range of about 352 to 357°C for fractions of 70-75, 75-80 and 80-85. The temperature at maximum degradation rate in pre-degradation stage is called hereafter as "pre-T_{\max}". Pre-T_{\max} is increased for these fractions by decreasing short chain branch content. The amount of mass loss at the Pre-T_{\max} is also increased by decreasing SCB content.

Due to the existence of the pre-degradation it seems to be impossible to calculate the accurate amount of degradation initiation temperature ($T_{5\%}$) for these fractions. Therefore, $T_{5\%}$ is not reported in Table 3 for these fractions. Considering the variations of T_{\max} vs SCB content in Table 3, it can be seen that an initial increase in the amount of T_{\max} from about 469°C to around 478°C is occurred by decreasing SCB content from 11.54 to 10.85 (br/1000 C). After this jump, approximately constant values for T_{\max} can be observed even at lower SCB contents up to 9.02 (br/1000 C).

Effect of hexyl branch content on pyrolysis products

To evaluating the effect of hexyl branch content on the degradation products, pyrolysis-GC-MS was carried out on different P-TREF fractions at three important stages of thermal degradation which are degradation initiation temperature ($T_{5\%}$), temperature at maximum degradation rate (T_{\max}) and degradation termination temperature ($T_{95\%}$). The test was a stepwise pyrolysis-GC-MS which samples were maintained at each temperature step for about 10 s. The obtained chromatograms in each temperature step have been plotted in Figures 8-10. As it can be observed in Figures 8-10, a 3-D representation of pyrolysis-GC-MS chromatograms for each temperature is plotted which shows relative intensity of evolved gases against

<table>
<thead>
<tr>
<th>Fraction</th>
<th>$T_{5%}$ (°C)</th>
<th>$T_{95%}$ (°C)</th>
<th>T_{\max} of pre-degradation (°C)</th>
<th>T_{\max} of main-degradation (°C)</th>
<th>SCB (br/1000 C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>432.3</td>
<td>487.5</td>
<td>-</td>
<td>-</td>
<td>11.5</td>
</tr>
<tr>
<td>70-75</td>
<td>491.3</td>
<td>352.3</td>
<td>0.6</td>
<td>469.3</td>
<td>10.9</td>
</tr>
<tr>
<td>75-80</td>
<td>490.2</td>
<td>356.6</td>
<td>1.7</td>
<td>472.2</td>
<td>10.3</td>
</tr>
<tr>
<td>80-85</td>
<td>490.7</td>
<td>356.9</td>
<td>11.9</td>
<td>477.6</td>
<td>9.0</td>
</tr>
<tr>
<td>30-140</td>
<td>440.7</td>
<td>493.5</td>
<td>-</td>
<td>480.1</td>
<td>8.8</td>
</tr>
</tbody>
</table>

(1) $T_{5\%}$: Temperature at 5% mass loss (degradation initiation temperature).

(2) $T_{95\%}$: Temperature at 95% mass loss (degradation termination temperature).

(3) Temperature at maximum degradation rate in pre-degradation stage.

(4) Temperature at maximum degradation rate in main degradation stage.

(5) SCB: Short chain branch content.
short chain branch content (hexyl branch content) and retention time.

The depth axis shows retention time of evolved gases which is an indication of differences in boiling points through GC column [46]. As the boiling point depends on the molecular weight [47], therefore, depth axis can illustrate molecular weight of evolved gases. The vertical axis shows relative intensity of different peaks which corresponds to relative concentration of each compound [46]. The horizontal axis indicates short chain branch content. As it is noticed in comparison of Figures 8-10, the number of peaks which intonates the

Figure 7. TGA and DTG curves of P-TREF fractions. An adapted expanded scale is used for each fraction for better comparison of degradation peak shapes: (a) TGA curves of initiation stage (150-460°C), (b) TGA curves of propagation stage (400-520°C), (c) DTG curves of initiation stage (150-460°C), (d) DTG curves of propagation stage (400-520°C).

Figure 8. 3-D variations of relative intensity of products of pyrolysis-GC-MS against short chain branch content and retention time at $T_{5\%}$, degradation initiation temperature.

Figure 9. 3-D variations of relative intensity of products of pyrolysis-GC-MS against short chain branch content and retention time at T_{\max}, temperature at maximum degradation rate.
number of products [46] is most at the $T_{95\%}$ (Figure 10). This may be attributed to the fact that by increasing the degradation temperature the number of products is increased. The overall thermal decomposition mechanism for PE can be described by free radical processes [48]. As temperature is increased, more scissions in the polymer chain occur leading to a high number of short primary radicals, which undergo successive β-scission reactions and eliminate small molecules [49]. For degradation at $T_{5\%}$ (Figure 8) a main peak is observed from 7.76 to 8.50 min which decreases with SCB content. But, for degradation at T_{max} and $T_{95\%}$ (Figures 9-10) two important peaks are observed which both increase with SCB content. Also by comparison of Figures 8-10 it can be concluded that with increasing temperature, main product (observed from 7.76 to 8.50 min at $T_{5\%}$) shifts to higher molecular weight products (observed from 9.41 to 9.90 min at $T_{95\%}$). Moreover for degradation at $T_{5\%}$ (Figure 8) only one main peak is observed between 7.76 and 8.50 min, although at higher temperatures (T_{max} and $T_{95\%}$) another main peak is observed between 11 and 14 min which can be related to products with higher molecular weights. In other word, the higher radical concentration (at higher temperatures) favors intermolecular hydrogen transfer and increases the bimolecular reaction probability [49]. As β-scission is favored at higher temperatures (≈500°C, near to $T_{95\%}$ of ethylene/1-octene copolymer) [50] and presence of higher SCB leads to more β-scissions (due to tertiary carbon existence), therefore by increasing the temperature and SCB content degradation of ethylene/1-octene copolymer may lead to increase the high molecular weight products (Figures 8-10) which would be mainly alkenes according to the Rice/Kossiakoff mechanism [51].

CONCLUSION

The results obtained in this work have shown that the content of hexyl branch in ethylene/1-octene copolymer plays an important role in thermal behavior. The DSC study has shown that melting temperature as well as crystallization temperature is increased by decreasing hexyl branch content linearly. Also in contrast to ethyl and butyl branch content for ethylene/1-butene and ethylene/1-hexene copolymers, respectively, which show exponential correlations in the literature, lamellae thickness has depicted a linear correlation with hexyl branch content here. Two different degradation peaks have been observed for ethylene/1-octene copolymer fractions at around 350 °C and 470 °C. At higher linear chains the first degradation stage is more intensified. Pyrolysis-GC-MS results have shown that the concentrations of main products are affected by the content of hexyl branches in the P-TREF fractions. Also the T_{max} has been obtained as temperature in which most number of products is produced. Moreover, it was found that the temperature can affect the concentrations of pyrolysis products.

ACKNOWLEDGMENTS

We thank Kerstin Arnhold and Christina Harnisch from Leibniz-Institut für Polymerforschung (IPF) Dresden e.V. (Germany) for pyrolysis-GC-MS measurements. We are also grateful to Dr. Mikhail Malanin (IPF) for FTIR and Petra Treppe and Dr. Albena Lederer from IPF for SEC-MALLS measurement and discussion, respectively.

REFERENCES

polypropylene random copolymers on mechanical properties and thermal degradation kinetics. Thermochimica Acta 543: 288-294
linear polyethylene at high pressures. Polymer 41: 3411-3423

Polymer 33: 4337-4342

51. Kossiakoff A, Rice FO (1943) Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals.