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ABSTRACT

Rheological models for polymer solutions and melts based on the finitely extensible non-linear elastic (FENE) 
dumbbell theory are reviewed in this study. The FENE-P model that is a well-known Peterlin approximation of the 

FENE model, indicates noticeable deviation from original FENE predictions and also experimental results, especially 
in the transient flow. In addition, both FENE and FENE-P models have some shortcomings from the point of view of 
theory. To overcome these shortcomings, a new approximation of the FENE spring force has been established. It has 
been used to develop a modified constitutive rheological model for polymeric fluids. In the procedure of modeling, 
the effect of non-affine deformation is introduced into the new model. Comparison between the model predictions 
and experimental data presented in the literature for transient and steady shear flow of polystyrene indicates that this 
modified model can predict the rheological behavior of polymeric fluids with a great accuracy. The newly developed 
modified model could predict different slopes that can cover the behavior of most of the polymeric fluids. Polyolefins 
J (2019) 6: 95-106

Keywords: Rheological modeling, spring force approximation, FENE model, FENE-P model, FENE-M2 model, FENE 
modification.
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INTRODUCTION

Finitely extensible non-linear elastic dumbbell is a  
molecular concept of a polymer chain that has been 
used to describe non-Newtonian rheological effects in 
polymer solutions and melts [1–7]. FENE model has a 
vital role in explaining complicated and more realistic 
physical phenomena of molecular behaviors [8–10]. 
FENE model predicts the shear-thinning viscosity, first 
normal stress coefficient and a plateau in the extensional 
viscosity at high extension rates [11, 12]. This model is 
reformed to the developed models or systems, such as 

FENE-P [13], FENE-L, FENE-LS [14, 15], FENE-S, 
FENE-D, FENE-QE, FENE-QE- PLA [16, 17], FENE-
PM [18], FENE-M, FENE-MR, FENE-LSM, and 
FENE-LSMR [19]. A complete review of the FENE 
and its modifications has been done by Venkataramani 
et al. [3] and Hyon et al. [16]. Except for some simple 
flows, the FENE model is very challenging and time-
consuming to handle and a closure approximation such 
as the FENE-P model especially when dealing with 
complex flows is needed [20, 21]. The FENE-P model 
indicates a noticeable deviation from the original FENE 
predictions and also experimental results especially in 
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the transient flow [14, 15, 19, 20, 22, 23]. In addition, 
the original FENE and existing closure models have 
some shortcomings from theoretical aspects. 

In this work at first, classical rheological modeling 
based on FENE theory is reviewed, and some 
shortcomings of FENE and FENE-P models are 
investigated. Then, a new approximation of FENE 
spring force and a rheological constitutive model 
based on the new approximation are developed. The 
model is solved in transient and steady shear flows. 
The effects of the model parameters on the model 
predictions are investigated. Finally, experimental 
data that are taken from the literature are compared 
with model predictions.

THEORETICAL

Review of classical rheological modeling based on 
FENE theory
The simplest mechanical models for flexible polymer 
molecules are the elastic dumbbell models, where 
two beads, each of mass m, are joined by a non-
bendable spring [24]. The tension in the spring is 
denoted by FC. The location of the beads is given 
by the position vector rv (ν=1, 2), with respect to an 
arbitrary origin of coordinates and the velocity of the 
bead is  r /d dt=r  of the same origin. The mass center 
rc of macromolecule is rc=1/2(r1+r2), and its velocity 
is rc . The connector vector or end-to-end vector 
Q=r2-r1 describes the overall orientation and internal 
configuration of the polymer molecules. Each bead 
is presumed to experience a Stokes’ law drag force. 
According to Stokes' law the drag force is assumed to 
be proportional to the relative velocity between solvent 
and bead, with a proportionality constant z called 
the friction coefficient [24, 25]. The beads represent 
molecular segments having several monomers, and 
the spring describes the entropic effects in which the 
end-to-end vector of the polymer is the subject [22]. 
The flow field of the polymer solution is taken to be 
homogeneous, then the mass average velocity of the 
solution can be written as v = v0+ [k.r] where v0 is 
a vector independent of position and kt=Ñv is the 
velocity gradient tensor which is independent of  the 
position vector r in the fluid,  and its trace has zero 
value due to the assumption of fluid incompressibility. 
The Fokker-Planck equation governing the evolution 
of the configurational distribution function Y(Q,t) is 
[24, 26]:
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Where kB is the Boltzmann constant, and T is the 
temperature in Kelvin. In equation (1) the first term 
on the right-hand side accounts for the hydrodynamic 
drag forces on the beads due to the dumbbell's 
movement through the solvent. The second term 
describes the Brownian motion force on the beads 
because of thermal fluctuations in the solvent, and the 
last one accounts for the forces transmitted through the 
connecting spring. The diffusion coefficient kBT/2z is 
assumed to be constant. For a function B(Q) of the 
connector vector, the time-dependent configuration 
space average is given by the following equation:

      QQQ 3),()( dtBB y∫=        (2)

Therefore, from the Fokker-Planck equation [24, 26], 
the equation of motion for the second moments of the 
distribution function for the end-to-end vector can be 
obtained as follows:
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Where QQ  is the second moment of configuration 
tensor and d is the unit tensor. The polymer contribution 
to the stress tensor, from the Kramer’s expression, can 
be obtained as [24]:

 ds Tknn B
C

p  +−= FQ        (4)

Where n is the number of macromolecules in the unit 
volume. To complete the model presentation, it is 
enough to introduce the spring force into equations 
(3) and (4). The simplest form of spring force is linear 
Hookean, that denotes by FC(Hookean) and takes the 
following manner [24, 27]:

( )C HookeanF H= Q         (5)

Where H is the spring constant. On the contrary 
with polymeric fluid behavior, the Hookean 
dumbbell model predicts constant values for all of 
the viscometric functions. This model can be only 
realistic for small deformations from the equilibrium 
(Gaussian distribution) and puts no limit to the extent 
in which the dumbbell can be stretched [11, 28]. 
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To describe non-Newtonian rheological effects in 
polymer solutions, the finitely extensible non-linear 
elastic (FENE) spring force was introduced by Warner 
et al. [29]:

( )C FENE
2 2

01 /
H

Q Q
=

−
F Q         (6)

Where Q0 is the maximum extension of polymer 
chains. By using the spring force equation (6), there is 
no closed constitutive equation for the polymeric stress 
tensor, and no simple analytical solutions are possible 
[24]. An analytically more tractable dumbbell model 
which leads to a final constitutive equation can be 
attained by substituting the configuration-dependent 
non-linear factor in the FENE spring force by a self-
consistently averaged term [24]:
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This pre-averaging spring force is known as the 
Peterlin approximation and the resulting model as the 
FENE-P model. In the FENE and FENE-P models, 
lH=z/4H and b=HQ0

2/KBT called relaxation time 
and extensibility parameter, respectively. Although 
most widely used non-linear kinetic models are 
FENE and its closure approximations, there are some 
shortcomings in the FENE and FENE-P models:
i. Based on Larson [30], when a chain end extends to 
increase the end-to-end distance Q, the needed force 
to overcome the entropic "spring" force of the chain 
is as follows:

QF 2
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where,
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By replacing the β from equation 9 to 8, the entropic 
force will be obtained as follows:
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On the other hand, at equilibrium (steady state with 

k=0), 0d
dt

=QQ , therefore, based on equation 3, the   
can be easily obtained as:

dTkBqe
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It is known that, at equilibrium, 2
eqQ tr= QQ , 

accordingly, Q2 will be generated as follows:
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Finally, from equations 10 - 12:

d)/(
 

HTkBqe
=QQ      (13)

According to Herrchen and Öttinger (Herrchen and 
Öttinger 1997), the equilibrium state for the second 
moment of the FENE is d])5(/[)/(      
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and those of for the FENE-P model is 
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QQ . Therefore, the equation 

13 for the FENE and FENE-P model will be satisfied 
just for b ∞→ . The obtained results are in accordance 
with the previous reports by Stephanou et al. [31]. In 
the real condition, the spring can be pulled to fully 
extent state, this means the polymer chain is in the 
fully stretched-out conformation. In this condition, 
FENE and FENE-P models calculate infinite value for 
spring force, in contrary with real condition.

ii. In the FENE and FENE-P models, the maximum 
extension of the polymer chain is Q0, then at 2 2

0Q Q=  
the spring force will be infinite based on mathematical 
equations because Fc will be infinite, but indeed, the 
spring force should have a finite value in the physical 
or real conditions. 

iii. The FENE-P model can be considered as a good 
approximation to the original FENE dumbbell model 
only in steady sate flows, while larger deviation can 
be seen in time-dependent flows [14, 15, 19, 22]. Van 
Heel et al. studied the start-up of shear and elongational 
flow of FENE and FENE-P by Brownian dynamics 
simulations and revealed that the FENE-P response 
could be so different from the FENE behavior [32]. 
They indicated that at the inception of the flow, the 
overshoot and the time which overshoot occurs, were 
more than those of FENE for the shear stresses. Also, 
the constant values of FENE-P predictions were 
higher than those of FENE. Herrchen and Ӧttinger 
indicated that the prediction of the FENE and FENE-P 
for material functions after the inception of flow is 
no longer quantitatively close; the time-dependent 
viscometric functions in the start-up of shear flow 
at high shear rates are over predicted by more than 
a factor of two by the FENE-P approximation. So, 
Peterlin approximation is not an appropriate closure 
for the FENE model [22].
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iv. The original FENE and FENE-P models predict 
only a constant value for the slope of the linear or 
power-law region in steady shear flow. In addition, 
the prediction of the models for second normal stress 
coefficient y2 is zero, and then they could not predict 
any value for y2/y1. 

To overcome the above shortcomings of the FENE 
and FENE-P models, a more convenient approximation 
of FENE spring force has been developed. Then a 
rheological model based on modified spring force 
has been presented. In addition, the effects of the 
non-affine deformation have been introduced into the 
modified model.

MODEL FORMATION

Spring force
As mentioned before, to overcome shortcomings of 
the FENE and FENE-P models, a new spring force 
approximation was introduced, which henceforth 
denotes FC(FENE-M2), as follows:
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Where ε is a phenomenological parameter. On the 
contrary with the FENE and FENE-P models, in this 
modified introduced spring force the second moment of 
the end-to-end vector of polymer chain at equilibrium 
condition is <QQ>eq=(kBT/H)d. In addition, the 
spring force would have a finite value at 2 2

0Q Q= . 
In the new form of spring force presentation, it has 
been assumed that the polymer chain can be extended 
a few more than 0 Q . At 2 2

0Q Q=  the polymer chain 
is under the fully stretched-out conformation. If the 
stretching continues, the bonds of the chain will start 
to extend. The maximum value of the chain extension 
is indicated by 2

qe
2
0

2
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QQQ e+=  or e32
max += bQ  in 

dimensionless form. Therefore, the acceptable values 
for e are e>-b/3.

Constitutive equation presentation
The following dimensionless forms of variables and 
parameters have been introduced to simplify the 
model presentation:
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Replacing equation (14) in (3) results in: 
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The contribution of polymer in the stress tensor can be 
demonstrated as follows in case of replacing equation 
(14) in (4):
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Where tr represents trace. To simplify more in 
equations (18) and (19), * * *  =M Q Q  is assigned. Also, 
the transpose of the velocity gradient tensor k* can be 
written as follows:

)(2/1 wγk −=∗ Hl      (18)

Where γ  is the rate of strain tensor and is the vorticity 
tensor. Now equations (16) and (17) are rewritten in a 
new form as follows:
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The developed model is called FENE-M2 
approximation on FENE spring force.

Introducing the non-affine deformation
In the study of dumbbell kinetic theory, it has been 
assumed that the two beads of the dumbbell move 
through the solvent without disturbing the velocity 
field [33, 34]. Therefore, the velocity of fluid in 
each bead is as same as the velocity of fluid (that is 
n=n0+[k.r]). An alternative procedure to introduce the 
effect of the flow perturbation at bead n resulting from 
the motion of the other beads is to replace the fluid 
velocity at bead by the following equation:

  ])-.([
2
1].[  cv0 rrrvv γk z−+= vv     (21)

Where z is a small quantity that called Gordon-
Schowalter (GS) parameter [24, 35, 36]. This 
parameter is also known as the “Slip parameter” 
which makes the corresponding stress related to the 
non-affine motion [37]. With no slippage (z=0), the 
motion of the polymer molecules is said to be affine. 
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If this alternative procedure is introduced to the 
FENE-M2 model, the time evolution equation (21) 
will be as follows:
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By this modification, the value of the second normal 
stress coefficient will be non-zero and Y2/Y1=-1/2z  
[24, 35, 36]. Constitutive equations, which have the 
GS derivative, show unreal oscillations in the start-
up shear flow material functions curve [38, 39]. This 
problem will be investigated in Section 4.2.

RESULTS AND DISCUSSION

Equation (22) represents a system of ordinary 
differential equations that is solved numerically 
both for transition and steady shear flows. The 
initial condition is the equilibrium state Meq

*=d and 
the model parameters are b, e and z. In simple shear 
flow, the velocity field is given by yv xyx  

γ= , 0 yv =  
and 0zv =  where xy 

γ  is the velocity gradient and can 
be a function of time. The absolute value of xy 

γ  is 
called the shear rate and denoted by γ . Thus, the rate 
of strain tensor and the vorticity tensor are as follows:
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The stress tensor has the following form with sxy=syx.
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For steady shear flow (sometimes called a viscometric 
flow) the shear rate does not depend on the time, it 
is presumed that the shear rate has been constant 
for so long that all the stresses in the fluid are time-
independent [24, 40]. The dimensionless shear 
viscosity η is defined analogously to the viscosity of 
Newtonian fluids:  
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Likewise, the dimensionless first and second normal 
stress coefficients *

1y  and *
2y  can be defined as follows, 

Where γlγ  H=*  is the dimensionless shear rate and 

*
 jis  are the components of the extra stress tensor given 

by equation (20):
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For each transient shear flow as in steady shear flow 
the relevant material functions are the viscosity η±, and 
the first and second normal stress coefficients Y1

± and 
Y2

±. The plus and minus signs are used for start-up 
and relaxation material functions, respectively. These 
are given in dimensionless form by equation (28):
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Therefore, in transient flow the curves of η, Y1 and Y2 
versus time describe the time-dependent rheological 
behavior of polymeric materials. In the following 
subsections, the effects of the influencing parameters 
on the model prediction will be investigated.

Effects of the slip parameter on the model 
predictions
As it is mentioned, introducing x into the model causes 
an oscillation in the material functions curve versus 
time in the start-up shear flow. Figure 1(a) indicates 
that at the given shear rate for small values of x, there 
is no oscillation in the curve of shear stress versus 
time. The oscillations in the curve are appeared as x 
is increased. 

Besides, the size of overshoot and steady value of 
the shear stress are decreased by increasing the value 
of slip parameter from zero (affine deformation) to 
up. In fact, the model shows increased shear thinning 
behavior as the “slippage” of polymer strands in the 
continuum takes into account correctly [41, 42]. Figure 
1(b) demonstrates that at a fixed value of x, b and e the 
frequency of oscillation is increased via increasing the 
shear rate. The frequency and amplitude of oscillation 
are a function of shear rate, b and e parameters. It has 
been found by mathematical solution of constitutive 
equation of the modified model that for given values 
of b and e, the value of x shows no oscillation and is 
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about ])([/51       γlez Hb +<  [43–45].
Figures 2(a) and 2(b) depict the influence of slip 

parameter x on the transient material functions, h± 
and Y1

± , respectively. The results indicate that the 
size of overshoot and steady state plateau values are 
decreased via increasing x. In Figure 3 the effect of the 
slip parameter on the shear rate dependent viscosity is 
presented. As it is seen for selected model parameters, 
increasing x from zero to 0.004 changes the slope of 
curve from -0.66 to -0.98.

Effects of the e parameter on the model predictions
The role of e which is a new parameter introduced 
into the FENE-M2 model, is investigated. To clarify 
the effect of e on the model predictions, a comparison 
between FENE, FENE-P and FENE-M2 model`s 
predictions in transient shear flows is done. As 
mentioned before, to choose a value for e, one should 
notice that the acceptable values for e are e>-b/3. Figure 

4(a) exhibits the evolution of the time in the first normal 
stress difference during start-up of shear flow for three 
models. The results indicated the FENE-P model is 
over prediction than the FENE model, especially at 
higher shear rates. The more shear rate increases, the 
more value of over predictions can be seen. It could 
be seen that the FENE-M2 predictions are so close to 
those of the FENE model for chosen parameters. It is 
possible to make the FENE-M2 predictions closer into 
the FENE or FENE-P by selecting different values 
of e. Figure 4(b) shows the FENE-M2 and FENE-P 
predictions for the first normal stress difference with 
respect to chosen model parameters which are nearly 
coincident when  . 

The effect of e parameter on the transient material 
functions, h± and Y1

±, is survived in Figures 5(a) and 
5(b), respectively. An increasing in e value grows the 
steady value of material functions. Besides, for both 
material functions, the overshoot occurs at a later time 
with increasing e.

Figure 6(a) and (b) represents the effect of e on 

Figure 1. Oscillations in the curve of shear stress vs. time 
in the start-up shear flow with model parameters b=50 and 
e=0:(a) Dimensionless shear rate has fixed value 51 H =γl   
and slip parameter has different values. (b) Slip parameter 
has fixed value x=0.04 and dimensionless shear rate has 
different values.

Figure 2. Effect of the slip parameter on the stress growth 
and relaxation of material functions with the dimensionless 
shear rate 5=γl H  and the model parameters b=50 and e=0: 
(a) viscosity and (b) first normal stress coefficient.

(a)

(b)

(a)

(b)
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the steady material functions, η and Y1, respectively. 
As it can be seen, increasing of e would increase the 

length of the plateau with no change in the slope of the 
curve. In the other hand, the “power law exponent” is 
independent of e values.

Effects of the extensibility parameter on the model 
predictions
The transient viscosity and the first normal stress 
difference coefficient at different values of extensibility 
parameter are presented in Figures 7(a) and 7(b). As it 
is seen, for both material functions, η± and Y1

±, the 
steady values grow with increasing b. In addition, the 
overshoot occurs at a later time with increasing b. 

Figures 8(a) and 8(b) display the influence of 
extensibility parameter on the steady viscosity and the 
first normal stress difference, respectively. Similarly, 
to the e effect, for both material functions increasing 
of b would increase the length of plateau. Also, the 
exponent of the power law is again independent of the 
extensibility parameter b.

Figure 3. Effect of the slip parameter on the steady viscosity 
with the model parameters b=50 and e=6.

Figure 4. Comparison between the FENE, FENE-P and 
FENE-M2 models in the prediction of the first normal 
stress difference in the start-up of shear flow. The model 
parameters are b=50 and x=0 and the dimensionless shear 
rates are γl H =1,2 and 4 (from down to top): (a) With e=-
3.5  the results of FENE-M2 and FENE models are close 
them (b) With e=-11.2 the results of FENE-M2 and FENE-P 
models nearly are coincident. Data for FENE model 
reproduced from van Heel et al. [32].

Figure 5. Effect of e parameter on the stress growth and 
relaxation of material functions with dimensionless shear 
rate γl H  =4 and model parameters b=20 and x=0: (a) 
viscosity and (b) first normal stress coefficient.

(a)

(b)

(a)

(b)
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Effects of the shear rate on the model predictions
Figures 9(a) and 9(b) show the effect of the shear 
rate on the transient material functions, h± and Y1

±, 
respectively. 

The results indicate that there is no overshoot or 

related phenomenon for low shear rates. The viscosity 
and the first normal stress difference show an overshoot 
when the shear rate increases to its larger values. The 
size of this overshoot increases by increasing the shear 
rate while the time corresponding to its maximum 

Figure 6. Effect of e parameter on the steady material functions with model parameters b=20 and x=0: (a) viscosity and (b) first 
normal stress coefficient.

Figure 7. Effect of the extensibility parameter b on the 
material functions with dimensionless shear rate γl H =4 
and model parameters e=6 and x=0: (a) viscosity and (b) 
first normal stress coefficient.

Figure 8. Effect of the extensibility parameter b on the 
steady material functions with model parameters e=6 and 
x=0: (a) viscosity and (b) first normal stress coefficient.

(a)

(b)

       (a)                (b)

(a)

(b)
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value decreases as the shear rate increases [41, 46]. 
Besides, relaxation curves show that both material 
functions relax monotonically to zero in low shear 
rate and then it relaxes more rapidly as the shear rate 
increases. 

Comparison with experimental data
The comparison between the model prediction and 
experimental data (taken from Schweizer et al. [47]) 
in the start-up shear flow is presented in Figure 10 for 
polystyrene melt at 175°C and three shear rates 0.1, 
1 and 3 s-1. The results indicate that the experimental 
data are in good agreement with model predictions. 

Figure 11 compares the model prediction in start-up 
shear flow for the first normal stress difference, N1, 
and the experimental data taken from Schweizer et al. 
[47]. The presented results show that model predictions 
are in qualitative and quantitative agreement with 
experimental results.

Figure 12 presents the model predictions with 
counterpart experimental data taken from Laun study 
for LDPE melt at 150°C in the steady shear flow for 
the viscosity and the first normal stress difference [48]. 

Figure 9. Effect of the shear rate on the transient material 
functions. Model parameters are b=50, e=0 and x=0: (a) 
viscosity and (b) first normal stress coefficient.

Figure 10. Comparison between the model prediction and 
experimental date in the start-up viscosity shear flow. Model 
parameters are b=20, e=4 and x=0.03. Data are taken from 
Schweizer et al. [47].

Figure 11. Comparison between the model prediction and 
experimental date for the first normal stress difference in 
start-up shear flow with γ =10s-1. Model parameters are 
b=20, e=4 and x=0.03. Data are taken from Schweizer et 
al. [47].

Figure 12. Comparison between the model prediction and 
experimental data for the viscosity and the first normal 
stress difference in the steady shear flow. Model parameters 
are b=18, e=0 and x=0. Data are taken from Schweizer et 
al. [47].

(a)

(b)
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As it is seen, the model predictions are in excellent 
agreement with experimental data.

CONCLUSION

In the review of the FENE and FENE-P models, 
some shortcomings of these models are highlighted. 
Prediction results in the transient flow indicate a 
significant difference between model predictions 
by original FENE and its approximation FENE-P. A 
new closure approximation for spring force has been 
developed and used to develop a modified FENE based 
(FENE-M2) model. The presented results indicate 
that this closure approximation should be closer to 
the original FENE than Peterlin approximation. In 
the procedure of modeling, the effect of non-affine 
deformation is studied and a parameter called slip 
parameter is introduced into the model to improve 
model prediction behavior. Where the FENE and 
FENE-P models predict only a constant slope for 
material functions in steady shear flow curves, the 
newly developed modified model could predict 
different slopes that can cover the behavior of most 
polymeric fluids. Comparison of the model predictions 
with experimental data shows the FENE-M2 model 
can predict the behavior of polymeric fluids in the 
steady and transient shear flow correctly.
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