

REVIEW PAPER

Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites

Alireza Nikfarjam1*, Roham Rafiee2, Mostafa Taheri2

¹Department of MEMS&NEMS, Faculty of New Sciences and Technologies, University of Tehran, P.O.BOX:14395-1561, Tehran, Iran ²Composites Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439955941 Iran

Received: 15 March 2016, Accepted: 21 July 2016

ABSTRACT

I solated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinforced polymers either theoretically or experimentally. The results reported in literature are reviewed and evaluated based on employed and/or developed methods by focusing on the electrical conductivity, permittivity and permeability properties. Available analytical and numerical simulations for predicting electrical properties of CNT-based composites are also reviewed. Besides, equivalent circuit modeling of nanocomposites containing CNTs is presented. The influence of effective parameters on overall electrical and electromagnetic characteristics of CNT-reinforced polymers is discussed based on published data. Therefore, highlighting the recent trends and challenges engaged in new investigations, those aspects which are required to be more deeply explored are introduced. **Polyolefins J (2017) 4: 43-68**

Keywords: Carbon nanotubes; nanocomposite; electrical properties; permittivity; permeability.

CONTENT	
INTRODUCTION	44
CNT AND CNT-BASED COMPOSITES	44
ELECTROMAGNETIC AND ELECTRICAL PARAMETERS	45
Electrical conductivity	45
Permittivity	45
Permeability	45
Loss tangent	46
Skin depth	46
THEORETICAL METHODS OF OBTAINING ELECTRICAL	
PROPERTIES OF ISOLATED CNTs AND NANOCOMPOSITES	
CONTAINING CNTs	46
Molecular dynamics simulations (MD)	46

MODELING	47
Modeling of interconnections of CNTs	47
Modeling of nanocomposites containing CNTs	48
Modeling based on probabilistic methods	48
LITERATURE REVIEW ON EXPERIMENTAL OBSERVATIONS	49
Electrical conductivity	50
Permittivity of CNT-based composites	55
Permeability of CNT-based composites	59
CONCLUSION	59
REFERENCE	61

* Corresponding Author - E-mail: a.nikfarjam@ut.ac.ir

INTRODUCTION

Carbon nanotubes (CNTs) as a new generation of materials have unique mechanical, thermal, electricaland electromagnetic properties [1-6]. Carbon nanotubes in semiconducting (zigzag) and metallic (armchair) types are considered as promising reinforcements for improving the properties of polymers. By incorporating CNTs into polymers, new category of nanocomposites with improved properties can be achieved not only from mechanical point of view but also from electrical and electromagnetic aspects.

The main objective of this article is to review the researches that conducted on the field of electrical and/or electromagnetic properties of CNT-reinforced polymers through analyzing electrical conductivity, permittivity and permeability of CNT-based films and composites. These parameters have a direct influence on determining the key parameters such as reflection and transmission coefficients of microwave [7], loss tangent [8] and skin depth [9]. They are important especially in high-frequency applications. Since simulation techniques including molecular dynamic (MD), Brownian dynamics (BD) and electrical circuit modeling approach are a challenging task to characterize the electrical behavior of CNT-based composites, experimental methods have been widely used by researchers [10-14].

Electrical properties of carbon nanotube can be exploited in various applications like display devices [15], batteries [16], fuel cells [17], super capacitors [18], solar cells [19] and transistors [20]. Due to their outstanding electromagnetic properties, they are also employed for constructing microwave lenses, waveguide and antennas [21], electromagnetic shielding [4-6, 22-27] and microwave absorption films [28,29,26]. Consequently, correct understanding of their functionality in electric and electromagnetic fields plays an important role in their development steps for their future potential applications.

In this article, first of all, the morphology and nanostructure of CNTs are explained and then the basic framework of electromagnetic properties is outlined. Different theoretical modeling and simulation methods for extracting electrical properties of individual CNTs and CNT-reinforced polymers are introduced afterward. Experimental measurements reported in the literature are reviewed and the trend of results is discussed by focusing on the electrical conductivity, permittivity and permeability properties.

CNT AND CNT-BASED COMPOSITES

A carbon nanotube (CNT) can be schematically considered as a rolled graphene sheet with a hexagonal lattice structure consisting of carbon atoms. In carbon nanotubes, each carbon atom is connected by covalent bonds to three other adjacent carbon atoms. Some researchers reported that the outermost wall of a MW-CNT is responsible for its electrical conductivity. But recently it is reported that all walls contribute to the electrical properties of MWCNT [30,31]. MWCNTs always show metallic behavior and have diameters between several nanometers to tens of nanometers and their lengths are larger than 100 nm [32], but SW-CNTs can show either metallic (Figure 1, B (right)) or semiconducting (Figure 1, B (left)) behavior according to their chirality (Figure 1, A) [33].

New generation of nanocomposites is created by incorporation of CNTs into polymeric matrices. Both thermosetting and thermoplastic resins are used for this purpose. Thermoplastic polymers include polypropylene, polystyrene, polyethylene, poly (methyl methacrylate), polycarbonate and nylon. Thermosetting polymers include polyester, vinyl ester, epoxy, phenolic, polyimide, polyurethane and silicone. Also polymers in terms of electrical properties are divided into two kinds of conductive and insulator polymers. Carbon nanotubes are employed to improve the electrical properties of insulating polymers such as PU, PEMA, PMMA, PC, epoxy, vinyl ester, PS, PVA,

Figure 1. (A) Chirality vector of carbon nanotubes, (B) Armchair structure (6, 6) and Zigzag (12, 0) respectively, from right to left [33].

PCL, PI or even conductive polymers such as PANI, PPY, PEDOT-PSS.

ELECTROMAGNETIC AND ELECTRICAL PA-RAMETERS

Those characteristic parameters defining electrical and electromagnetic properties of a material are briefly explain in this section.

Electrical conductivity

Electrical conductivity is a parameter showing ability of passing the electrical current through the material. Electrical conductivity is formed in two forms, direct current (without frequency-dependent sources) and alternating current (dependent to frequency). Microwave electrical conductivity is calculated using the permittivity according to equation 1:

$$\sigma_{\rm mw} = 2\pi f \varepsilon_{\rm o} \varepsilon^{\rm m} \tag{1}$$

where σ_{mw} is the electric conductivity (S/m), f is the frequency (Hz), ε_{o} is the vacuum permittivity ($\varepsilon_{o} = 8.854 \times 10^{-12}$ F/m) and ε'' is the imaginary permittivity. Microwave electrical conductivity (σ_{mw}) which is sum of the direct current (DC) and alternating current (AC) is expressed by equation 2:

$$\sigma_{\rm mw} = \sigma_{\rm ac} + \sigma_{\rm dc} \tag{2}$$

By using dielectric relaxation spectroscopy (DRS) technique the response of the system is taken through placing the samples between two capacitor plates and the applying alternating voltage [34]. By measuring complex impedance $Z^* = Z' - iZ''$, complex permittivity can be obtained according to equation 3 [35]:

$$\varepsilon^*(\omega) = \frac{1}{i\omega Z^*(\omega)C_o}$$
(3)

Where ($\omega = 2\pi f$) is the angular frequency and C_o is the equivalent capacitance of the free space[14].

With increasing CNT content in a polymer matrix, a sharp rise in conductivity of nanocomposite is observed at a specific CNT content. This is known as percolation, implying on formation of a 3Delectrically conducting network within the polymer matrix. The percolation threshold can be calculated by plotting the electrical conductivity versus the volume fraction of CNTs and fitting with a power law function [36,10,11], $\sigma = \sigma_0 (\upsilon - \upsilon_0)^{\beta}$, where σ is the electrical conductivity of the composite, σ_0 is the specific conductivity, υ is the volume fraction of CNTs, υ_0 is the volume fraction at the percolation threshold and β is a parameter related to the system dimensionality.

Although the lowest percolation thresholds in the CNT-based composites have been almost obtained by using the solution method [23], the percolation threshold achieved by in-situ polymerization method is about 0.0025 [11].

Permittivity

Complex permittivity (ϵ) is defined as the product of the relative permittivity multiplied by the vacuum permittivity constant ($\epsilon_0 = 8.85 \times 10^{-12}$ F/m). In equation 4, ϵ , D and E are the electric permittivity, electric flux density (q/m²) and electric field intensity (v/m), respectively.

$$\mathbf{D} = \mathbf{\varepsilon} \mathbf{E} \tag{4}$$

Complex relative permittivity (ε_r) consists of two real and imaginary parts. The real part (ε') is known as dielectric constant or charge storage and the imaginary part (ε'') is known as dielectric losses or loss factor ($\varepsilon_r = \varepsilon' - j\varepsilon''$). The imaginary part indicates the ability of material in absorption of radio frequency waves. So, high value of this parameter (loss factor), indicates materials with high absorption properties.

Permittivity at the megahertz-range frequency has high values [7] and at the gigahertz-range frequency is greatly reduced [8]. In general, permittivity always decreases by increasing the frequency. This performance occurs at high CNT volume fractions. It was shown that the real and imaginary parts of the electrical conductivity affect this parameter. Finally, for nanocomposites with higher electrical properties, the lower permittivity, especially in its imaginary part is required.

Permeability

The complex permeability (μ), as shown in equation 5, is expressed as the product of the relative permeability (μ_r) multiplied by the vacuum permeability

Figure 2. The equivalent circuit model of the t-MWCNT/EP and m-MWCNT/EP composites [54].

 $(\mu_0 = 4\pi \times 10^{-7} \text{H/m})$. Complex relative permeability (μ_r) consists of two real and imaginary parts. The real part (μ') is known as magnetic storage and the imaginary part (μ'') is known as magnetic loss $(\mu_r = \mu' - j\mu'')$.

$$B = \mu H \tag{5}$$

where, B is the magnetic flux density (Tesla) and H is the electric field intensity (A/m).

For enhancing microwave absorption, the initial permeability (μ_i) of the absorbing material should address the highest possible value. For example, the μ_i of ferromagnetic materials could be expressed as $\mu_i = \frac{M_s^2}{akH_cMS + b\lambda\xi}$, where a and b are constants obtained by the material compositions, λ is the magnetostriction constant, ξ is the elastic strain characteristic of the crystal, and k is a proportionality coefficient. As it can be seen, the permeability can be enhanced either by improving M_s or by decreasing H_c. This is favorable for enhancing the microwave absorption capability of the material [37].

Loss tangent

Loss tangent, known as dielectric loss or tan δ , is described by equation 6; this parameter represents the ability of converting the stored energy in the material to heat energy. High loss factor (ϵ'') and high loss tangent (tan δ) show high ability of the materials in absorbing the radio waves [38].

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'} = \sigma \varepsilon_0 \varepsilon_r \tag{6}$$

Materials with $tan(\delta) >>1$ are known as good conductors, and with $tan(\delta) <<1$ are known as poor conductors[39].

When the electromagnetic radiation encounters with a conductor/insulator composite surface, the electric field produces two different electric currents (conduction current and displacement current) in the material. These currents increase the loss factor (imaginary part of the permittivity). In general, absorbing the electromagnetic radiations and converting these waves into heat, depends on the complex relative permittivity and loss tangent [40]. The loss tangent or dielectric loss factor increases in CNT-based composites by increasing the diameter and volume fraction of CNT.

Skin depth

The skin depth is a distance evaluating ability of theelectromagnetic field to propagate within a material [41]. From theoretical point of view, a good conductor has zero skin depth. While for aluminum, this distance is placed between 0.748 to 0.611 μ_m for the Ku frequency band (12 to 18 GHz) at μ_r =1 and resistivity of 2.65×10⁻⁸ (Ωm). Skin depth is calculated using below equation:

$$\delta = \sqrt{\frac{2}{\omega.\mu.\sigma}} = \sqrt{\frac{2}{\pi.f.\mu}}$$
(7)

where ρ is the resistivity of the conductor in Ω .m, f is the frequency in Hz and μ is the absolute magnetic permeability of the conductor.

THEORETICAL METHODS OF OBTAINING ELECTRICAL PROPERTIES OF ISOLATED CNTs AND NANOCOMPOSITES CONTAINING CNTs

In a general classification, the electrical properties have been extracted by both the theoretical and experimental methods. In this section, the theoretical methods categorized under simulations and modeling techniques are introduced.

Molecular dynamics simulations (MD)

In molecular dynamics simulations (MD) and Brownian dynamics simulations (BD), the simulation of carbon-carbon bonds of one or several carbon nanotubes is explained. Although these methods are very accurate in prediction, they are suffering from complex formulations, intensive computations and considerable simulation runtimes. They are able only to compute the limited lengths of carbon nanotubes [42].

Figure 3. Impedance Nyquist plot for nanocomposites with 0.1 vol% (left) and 0.4 vol% (right) of CNT [54].

This limitation avoids to simulate the nanocomposites and ultimately their properties with broader perspectives. As it is observed in Table 4, in most of the simulation methods, the physical (mechanical) properties have been studied.

MODELING

Modeling methods are divided into three categories as: modeling of interconnections of CNTs, modeling of nanocomposites containing CNTs and probabilistic methods.

Modeling of interconnections of CNTs

In the approach of modeling of interconnections of CNTs, the models have been obtained based on existed theories for making the models. In this type of modeling, the primary data and design assumptions are extracted from MD simulation. For instance, parameters such as mean free path (MFP) (which is considered as 1.6 μ m in this type of modeling) and also the van der Waals gap between shells (which is equal to 0.34 nm in modeling) are extracted from MD simulation. Although the accuracy of the modeling methods is lower than that of the MD simulation, they are not limited to small systems and through presenting some proofs and assumptions all types of single, double and multi-walled CNTs and also bundle of CNTs can be modeled.

In all contents related to polymer-based nanocomposites, the data have been collected based on the results extracted from tests on different combinations. Burke studied on the electrical properties of nanotubes at high frequency by extracting the electrical equivalent circuit of single wall carbon nanotubes [43, 44]. Within the recent decade, considering the simple structure of single wall carbon nanotubes comparing to double and multiwall ones, these types of carbon nanotubes have received more attentions. Considerable advancements in this context ultimately resulted in accessing to functional specifications of a single wall carbon nanotube and bundle of single wall carbon nanotubes [44, 45]. For instance, researches have been performed to establish equivalent circuit of a SWCNT [44, 46] and ultimately resulted in functional predictions of SWCNT connections [44]. In some papers, the dependence of nanotubes diameter for connection and Ohmic resistances of a bundle of SWCNT which are very important for implementation of nanotubes connections, have been evaluated [47]. The maximum value of conductive channel per cross-section area is required to reach the maximum conductivity in the applications of CNTs interconnections. Naeemi and Meindl [45] examined and calculated the number of conductive channels available in MWCNT by the approximate method and also presented a physical model of MWCNT.

Higher diameters of MWCNTs will be led to higher electrical performance [46, 47]. Puet al. [48] have constructed the electrical model of DWCNT interconnections. DWCNTs have a simpler structure than

ЕЗ IPPI

MWCNTs, because the van der Waals force within the gap between two shells remains in the constant value. In DWCNTs, the diameter of internal shell is different from that of external shell; therefore their resistances will be different from each other.

The recent tests show that the resistance of a MW-CNT [49] or bundle of MWCNTs [50] may be lower than that of an ideal conductor SWCNT, and also it is evident that more than one wall is effective in defining their conductivity.

Electrical conductivity of a CNT is described by equation 8:

$$G = G_0 = (2e^2/h)M$$
 (8)

In the above equation, $G_0 = (2e^2/h) = (12.9k\Omega)^{-1}$, e is the electron charge; h is Planck's constant and M is the number of available conductive channels.

Electrical conductivity and resistance of all types of CNTs which have been obtained using theoretical modeling are tabulated in Table 1 [51-53].

Modeling of nanocomposites containing CNTs

The second category of modeling that is known as semi-empirical modeling is dealing with modeling of all types of nanocomposites containing CNTs. Electrochemical impedance spectroscopy (EIS) is an analytical method for investigating the properties of numerous complex nonlinear electrochemical processes with different conditions (such as temperature, pressure, etc.) that uses relatively simple equivalent circuits (consist of resistance, inductor and capacitor). Ultimately, upon drawing the Nyquist impedance diagram and extraction of corresponding data, the respective electrical model will be extracted.

Cheng et al. [54] presented an electrical equivalent circuit model of nanocomposites containing MWCNT and epoxy with use of semi-empirical method shown in Figure 2.

Results proved that the simulated impedance spectra of the equivalent circuit (see Figure 2) fitted the actual impedance spectra of composites (Figure 3). Then Figure 2 could be confirmed as the equivalent circuit model of the composites prepared herein. Specifically, the equivalent circuit consists of a capacitance (C), an inductance (L), a constant phase element (CPE) and three resistances (R1, R2, and R3). Because the t-MWCNT/EP and m-MWCNT/EP composites have similar microstructures, so they have similar equivalent circuit elements [54].

The corresponding parameters from the equivalent circuit model have been calculated and shown in Table 2.

The impedance Nyquist plot obtained from EIS includes a circular part and an inclined line. This type of plot (plot with one time constant) is simulated by the simple electrical circuits. In Figure 4, the impedance Nyquist plots are shown for the specimens containing 0.1 and 3 wt% of MWCNT [55].

The electrical equivalent circuit extracted from the impedance plots is depicted in Figure 5. This equivalent circuit comprises of four electrical elements including solution resistance, charge transfer resistance, double-layer capacitance and Warburg impedance.

The numerical values of electrical equivalent circuit elements presented for the investigated nanocomposites are presented in Table 3 for different wt% of CNT and in the frequency range of 101 to 108 Hz.

Modeling based on probabilistic methods

In these methods, the distortion of carbon nanotubes and their effects are studied. The distortion which is arisen from the aspect ratio of the nanotubes in the resin causes to create more connection points compared to those created in straight nanotubes. This will change the connection resistance. Lithium and Thostenson [56] presented a probabilistic model and studied the distortion of nanotubes and the effect of this parameter on the percolation threshold and electrical conductivity. They generated a network of carbon nanotubes randomly in the form of long polygons with the equal lengths in a rectangular shape with the specified length and width and considered a random direction for each situation. They also studied the impact of aspect ratio and curvature of nanotubes. Yi et al. [57] modeled the nanotubes as sinusoidal waves in their modeling.

In Table 4, samples of theoretical (simulation, modeling) and experimental methods are provided [8, 10-19, 21, 34, 41, 42, 44, 54, 56-58]. Mendes et al. [58] used Brownian dynamics simulation for separation of the conductive and semi-conductive carbon nanotubes.

TABLE A THE STREET STREET		CONT. S. U	
Table 1. Electrical conductivit	y and resistance	of CN IS IN th	neoretical method.

Researcher	Material	Chirality	Aspect ratio	Diameter (nm)	Length (µm)	Resistance (kΩ)	Conductivity (s/m)	Year
Bockrath et	Cu	-	2	14	0 to 1000	-	1227	2008
al.[51]				22			1664	1
				32			2070	1
	SWCNT	Random (1/3 Metallic)	2	1		-	909 to 2857	
		All Metallic		1			2857 to 8333]
	MWCNT	-	2	14		-	175 to 8000	
				22			189 to 6250	
				32			227 to 5000	
Naeemi et	Cu	-	-	14	0.1 to 1000	-	0.1×10 ⁴	2008
al.[52]				22			0.6×10 ⁴	
				50			0.21×10 ⁴	
				100			0.271×10 ⁴	
	SWCNT		-	1		-	0.017×10⁴ to 0.6×10⁴	
							0.003×10⁴ to 0.2×10⁴	
				1.5				
				10		-	0.006 to 0.32	
				20			0.006 to 0.6	
				50			0.006 to 1.6	
				100			0.006 to 2	
Hosseini et	SWCNT	Random	-	2.4	10 to 80 nm	780 to 20	-	2010
al.[53]	Bundle	(1/3 Metallic)		1	length of bundle	475 to 10		
	21 0	All Metallic		2.4	or buridle	300 to 5		
				1		165 to 2.5		
	Copper Interconnect 27 °C	-	-	-	10 to 80 nm length of bundle	740 to 10	-	
	SWCNT	Random (1/3	-	2.4	10 to 80 nm	1400 to 25	-	
	Bundle	Metallic)		1	length	775 to 20		
	100 °C	All Metallic		2.4	of bundle	470 to 10		
				1		265 to 5		
	Copper Interconnect 100 °C	-	-	-	10 to 80 nm length of bundle	760 to 20		

LITERATURE REVIEW ON EXPERIMENTAL OBSERVATIONS

Numerous researches on extracting electrical properties are devoted to the experimental methods. Experimental methods investigate parameters such as, type, geometry and structure of CNTs in isolated CNTs, and in combination of polymer and CNT. CNT volume fraction, orientation, polymer type, method of processing, disentanglement of CNT agglomerates and CNTs connection in the solution (conductive network) are also analyzed by various investigations. The electrical conductivity, permittivity, permeability, loss

Table 2. The corresponding parameters from the equivalent circuit model.

Composite	L (H)	R1 (Ω)	C (F)	R2 (Ω)	CPE (F)	n	R3 (Ω)
m-MWCNT0.5/EP	2.03×10 ⁻¹³	5.099	5.108×10 ⁻¹²	4436	1.955×10 ⁻¹⁰	0.9204	2.407×104
t-MWCNT0.5/EP	1.378×10 ⁻¹⁶	3.888	1.192×10 ⁻¹¹	2.204×10 ⁻¹²	1.202×10 ⁻¹⁰	0.9653	2.397×104

Figure 4. Impedance Nyquist plot for nanocomposites with 0.1 wt% (left) and 3 wt% (right) of CNT [55].

tangent and skin depth of CNT-reinforced polymers are investigated.

$R = l \rho / A \tag{10}$

Electrical conductivity

Electrical conductivity of isolated carbon nanotubes

Among other materials, CNTs have the highest electrical conductivity [33, 59, 60]of about 109 A/cm² and 1010A/cm² at 250°C [61]. A ballistic transport phenomenon is experienced by metallic CNTs. The travelling of metal electrons is slowed down, since they are colliding with the crystal lattice and other electrons. This process is also called scattering. The average distance which can be travelled by the electron (before scattering occurs) is called the mean free path (MFP). Finally, this process will be led to Ohm's law [62]:

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E} \tag{9}$$

where, J is the current density, σ the electrical conductivity and E the electric field. The electrical resistance is shown by equation 10:

Figure 5. Electrical equivalent circuit extracted from impedance plots [55].

where l is the length (cm), A is the cross section (cm^2)
and ρ is the resistivity (Ω .cm) of the material. Finally,
electrical conductivity can be obtained by reversing
the resistivity, according to equation 11:

$$\rho = 1/\sigma \tag{11}$$

Reported experimental observations in literature for the electrical conductivity of isolated carbon nanotubes [63-66] and graphenes [67] are shown in Table 5. As it can be seen from Table (5), there is as light difference between electrical conductivity of steel nanoparticles [68] as a strong conductor of electrical current and carbon nanotubes [65, 66].

In Table 6 general overview of experimental observations of DC electrical conductivity of CNT-based composites are given [8-14,21,34,63,64,75-122].

 Table 3. Numerical values of electrical equivalent circuit elements [55].

CNTs wt%	C _{dl}	R _{ct}	R _s	Warburg coefficient
0.1	1.5 × 10 ⁻⁷	742	67	5 × 10 ⁻³
0.3	3 × 10 ⁻⁷	512	48	5 × 10 ⁻²
0.2	8 × 10 ⁻⁷	438	42	1.8 × 10 ⁻²
1	3.4 × 10⁻ ⁸	345	36	3 × 10 ⁻²
1.5	4.1 × 10⁻ ⁸	327	32	5.78 × 10 ⁻²
2	6.34 × 10 ⁻⁸	290	27	7.38 × 10 ⁻²
2.5	7.14 × 10⁻ ⁸	276	25	8.09 × 10 ⁻²
3	8.42 × 10 ⁻⁸	268	22	9.12 × 10 ⁻²

Method	Experimental					
		Theory	Electrical cit	rcuit modeling	modeling	Brownian
			isolated CNT	CNT-based	Probabilistic	dynamics
			SWCNT	composite	method	simulations (BDS)
Researcher				(Semi empirical)		
[10-15, 34]						
[8, 15, 21, 34, 44]						
[41, 42, 44]						
[16-19, 54]						
[56, 57]						
[58]						

Table 4. Evaluation methods of electrical properties of isolated carbon nanotubes and nanocomposites containing CNTs.

Electrical conductivity of CNT-based composites Electrical conductivity of CNT-based composites in both DC and AC are presented in Tables 5 and 6, respectively.

A) Direct current electrical conductivity

The majority of investigations are carried out on DC electrical conductivity.

Mamunya et al. [69] in their recent research achieved the electrical conductivity about 1000 S/m and percolation threshold of about 0.396 wt% for the nanocomposite samples. Also Liao et al. [70] achieved the electrical conductivity about 0.75×10^5 S/m in the metallic nanocomposite where vinyl ester resin was used with70 wt% graphite and MWCNTs loadings up to 2 phr. Their results showed that increasing the CNT loading up to 1 phr led to the increase in the electrical conductivity and after that it remained almost constant.

Yan et al. [71] investigated effects of length, diameter, concentration, and interface properties of CNTbased composite using the average field theory. When the aspect ratio (M) was greater than 15, the percolation threshold (fc) of the CNT composite was inversely proportional to the CNT aspect ratio [72], i.e., $f_c=0.7/M = 0.7d/L$, which was found by Monte Carlo

Table 5. Electrical conductivity of isolated carbonnanotubes.

Researcher	CNT type	Electrical conductivity (S/m)		
Grimes et al. [21]	SWCNTs	3×104		
Sundaray et al. [63]	MWCNTs	10 ⁴		
WU et al. [64]	MWCNTs	2×10 ⁴		
Kim et al. [65]	CNT	10 ⁵		
Ma et al. [66]	SWCNT	10⁴ to 10 ⁸		
Kuilla et al. [67]	MWCNT	10⁵ to 107		
Lewandowska et	Graphene	7200		
al. [68]	Nano sized steel	1.35×10 ⁶		

simulation [73–74].

Researchers achieved the DC electrical conductivity of CNT/PMMA composites about 1000 S/m [79], 3000 S/m [78] and 10000 S/m [14]. In some cases, the electrical conductivity increased 10 orders of magnitude higher than that for pure polymer. The level of electrical conductivity for PMMA polymers is about 10⁻⁷ S/m. Kim et al. [78] obtained 3×10³S/m electrical conductivity of composite by adding less than 0.4 MWCNT to PMMA. On the other hand, Skakalova et al. [14] with the higher volume fraction of SWCNT reached to higher electrical conductivity, compared to the work of Kim et al. [78] that used MWCNT in fabrication of nanocomposite. Also Grimes et al. [21] used PMMA with 2×10⁻¹⁰S/m and SWCNT with 3×10⁴S/m electrical conductivities and achieved the composite with electrical conductivity of about 0.4 with using insitu polymerization method, which was comparable with the work of Kim et al. [78,79].

The electrical conductivity of nanocomposite containing the insulated polymers such as PMMA and PS [108] with DC electrical conductivity 10000 S/m showed that the highest value of electrical conductivity of nanocomposites was independent of the conductivity of polymers, but ultimately could not be neglected the effects of conductive polymers such as PANI with 3000 S/m [102] and PPY with 4000 S/m [120] in increasing the total electrical conductivity. In more nanocomposites samples with high electrical conductivity, such as [21] with 0.4 S/m, [100] with 200 S/m, [64] with 398 S/m, [104] with 1600 S/m, [117] with 5100 S/m and [120] with an electrical conductivity about 9100 S/m, in-situ polymerization method

Matrix Composite **CNT** weight electrical electrical f_c (wt%) Method of Matrix **CNT** type fraction Researcher Processing conductivity conductivity t (wt%) (S/m) (S/m) SWCNT PU 2.2 × 10⁻² Liu et al. [8] (modified 2 Solution ~0.2 arcing method) PANI-MWCNT In-situ oxidative Saini et al. [9] PS 10 to 30 ≈10⁻¹⁶ 5.4×10⁻³ to 3.5 0.5 (CVD) polymerization route MWCNT (CVD) In-Martin et al. [10] Ероху 0.01 10-3 _ situ polymerization 8.6×10² d=50, l=43 ±3 MWCNT (CVD) d= 1 2.5×10⁻⁴ In-Sandler et al. [11] ≈10-9 2 Epoxy situ polymerization 50, I= 17±3 1.2 MWCNT Moisala et al. [12] 05 Experimental 4×10^{-1} Epoxy _ Kimet al. [13] PC MWCNT 5 Experimental _ 6.4×10¹ _ Skakalova et al. [14] PMMA SWCNT(HiPCO) 10 Experimental 104 PEMA SWCNT ≤23 In-situ ≈2×10⁻¹⁰ ≈3 Grimes et al. [21] ≈0.4 arc-discharge polymerization MWCNT In-situ 6×10⁻² Logakis et al. [34] PET 2.5 3 × 10⁻¹ d= 9.5, I= 1 polymerization <5×10⁻² MWCNT 10-12 <2 5.3 × 10⁻² Sundaray et al. [63] **PMMA** Electrospinning _ In-situ chemical PPY MWCNT (CVD) ≤3 ≈3.98×10² Wu et al. [64] oxidative 1 56×10² _ polymerization ≈ 7×10¹ 3.3×10⁻¹ PMMA SWCNT ≤8 ≈5×10-6 Benoit et al. [75] Solution mixing (8 wt%) 21 10⁻³ ≈0.5 PMMA MWCNT ≈5×10⁻¹¹ Stephan et al. [76] ≤16 Spin coating (16 wt%) _ Coagulation ≈1×10⁻² ≈1 Fischer et al. [77] **PMMA** SWCNT(HiPco) ≤7 ≈10-9 method (7 wt%) ≈3×10³ 3×10-3 Kim et al. [78] **PMMA** MWCNT(CVD) ≤0.4 Solution mixing <10-7 (0.4 wt%) 2.15 10-7 10³ ≈3×10⁻³ Solution mixing/ Kim et al. [79] **PMMA** MWCNT (CVD) ≤40 (0.001 wt%) (0.3 wt%) casting ≈5×10¹ 4.29×10⁻¹ SWCNT (arc Solution mixing/ **PMMA** Chauvet et al. [80] 104 _ discharge) casting (10.4 wt%) 21 Purified SWCNT 3.9×10⁻¹ Coagulation ≈5×10⁻³ Du et al. [81] **PMMA** ≤2 _ (HiPco) method 2.3 1.44 MWCNT ≈1 S/m Pötschke et al. [82] PC ≤5 Melt mixing ≈10⁻¹⁴ d=10-15, l=1-10 t = 2.1 (5 wt%) PPE: SWCNT 5×10⁻²-10-13 PC Solution mixing 4.8×10² Ramasubramaniam (HiPco) **10**⁻¹ 7 et al. [83] 4.5×10⁻² PS SWCNT-functional Experimental 6.89 1 Pötschke et al. [84] PC MWCNT (CVD) 3 Extruded _ 5 3.8 PC **≈10**⁻¹³ Pötschke et al. [85] MWCNT ≤15 Melt extrusion ≈10 1-1.5 MWCNT Pötschke et al. [86] PC ≤15 Melt mixing ≈2×10⁻¹³ ≈1×10³ 1–1.5 MWCNT (CVD) 1-2 Pötschke et al. [87] PC 15 Experimental 10 d=10-15, I=1-10 High frequency SWCNT ≤0.21 7.4×10⁻² Kim et al. [88] Epoxy _ ≈1.25×10⁻³ sonication

Table 6. DC electrical conductivity of CNT-based composites.

Song et al. [89]	Ероху	MWCNT(CVD)	≤1.5	Solution mixing d= 20, l= 10–50	≈10⁻7	≈0.5	5×10 ⁻¹
Barrau et al. [90]	Ероху	SWCNTs/DWCNTs	≤0.4	Solution mixing	10-13	≈10 ⁻² (0.4 wt%)	8×10 ⁻² 2.28
Gojny et al. [91]	Ероху	MWCNT	≤0.5	Calendering process	≈10⁻ଃ	≈10 ⁻² (0.5 wt%)	<10 ⁻¹ -
Thostenson et al. [92]	Ероху	MWCNT d=15 to 20, I > 10	≤5 wt%	Calendering process	≈10 ⁻¹⁵	≈5×10 (5 wt%)	<10 ⁻¹ -
Wu et al. [93]	Ероху	MWCNT(CVD) d=20, l=several microns	23.1	Experimental		0.1 In 1 GHz (AC)	-
Huang et al. [94]	Ероху	SWCNT (Modified arc- discharge)	15	In-situ polymerization	2.44 × 10 ⁻¹¹	2×10 ¹	6.2×10 ⁻² 2.68 3.18×10 ⁻¹
Kovacs et al. [95]	Ероху	MWCNT (CCVD) d _{in} =4, d _{out} =15 I= 15	1	In-situ polymerization	10 ^{.9}	4×10 ⁻¹	1.1×10 ⁻² 1.7
Yu et al. [96]	Ероху	SWCNT (Arc), Carbon Solutions Inc.	4	Sonicated, stirred		10	4×10 ⁻² 1.7
Liu et al. [97]	Epoxy	SWCNT (Arc)	14	Manually mixed		10-2	6×10 ⁻¹
Li et al. [98]	Epoxy	MWCNT (CVD)	1	Sonicated		2×10 ⁻²	2.7×10 ⁻¹
Deng et al. [99]	PANI	MWCNTs	≤10	In-situ emulsion polymerization	2.6×10 ⁻¹	6.6	_
Long et al. [100]	PANI	MWCNTs		In-situ chemical oxidative polymerization	1.1	≈1.27×10²	<24.8
			30			2.6×10-4	
Sharma et al. [101]	PANI	MWCNTs	50	solution casting	_	1.7×10 ⁻¹	-
Blanchet et al. [102]	PANI	SWCNT	15	Sonicated		3×10 ³	3×10 ⁻¹ 2.1
Dalmas et al. [103]	SBA	Purified MWCNTs	≤5.4	Suspension mixing	≈10 ⁻¹¹	≈20	_
Kymakis et al. [104]	PPY	CNTs	≈50	In-situ polymerization	3×10 ²	≈1.6×10³	-
Koerner et al. [105]	PU	MWCNT	10 vol%-0.5	solution casting		10 ² -10 ³	5×10⁻³
Gryshchuk et al. [106]	VE	MWCNT (CVD)	2	Sonicated, stirred		4×10 ⁻²	<5×10-1
Battisti et al. [107]	UP	MWCNT	0.3	Experimental	_	1.3×10 ⁻¹	2.6×10 ⁻²
Grossiord et al. [108]	PS	MWCNT (thermal CVD)	2	Experimental		10 ³	1.5×10 ⁻¹ - 2×10 ⁻¹
Poa et al. [109]	PS	MWCNT (Arc)	25	Sonicated, hot pressed		3×10 ²	< 12
Li et al. [110]	PVA	MWNT	60	Experimental		100	5–10
Yoshino et al. [111]	PAT	MWCNT (CVD)	35	Sonicated		5×101	12 2.6
Saeed et al. [112]	PCL	MWCNT (CVD) d=10–20, l=10–50	7	Sonicated, stirred		10	1.5
Mitchell et al. [113]	PCL	SWCNT	3	Sonicated		10 ⁻³	0.09 1.5
Mierczynska et al. [114]	PE, UHMW	MWCNT (CVD)	1	Sonicated, dry mixed, hot pressed		5×10 ¹	0.045 2.6
Lisunova et al. [115]	PE, UHMW	MWCNT (CVD)	0.7	stirred		10-1	0.14 1.8

Zhao et al. [116]	PVDF	MWCNT (CVD) d= 10–50, l= 4 to 10	2	In- situpolymerization Sonication	3×10 ⁻¹⁰	10	<0.07
				Shear		8.9 × 10 ³	5×10-4
Mclachlan et al. [117]	PI	SWCNT(HiPco) d=0.9–1.2, l=3	-	Sonication	6.3 ×10 ⁻¹⁵	3.2×10 ²	5.06×10⁴
				In-situ polymerization		5.1×10 ³	5.55×10-4
Kilbride et al. [118]	PVA	SWCNT	-	Sonication spin casting	≈10 ⁻¹⁰	2×10⁻³	2.9×10⁴
Barrau et al. [119]	Ероху	SWCNT	-	Shear in-situ polymerization	≈10 ⁻¹⁴	7×10 ⁻²	3×10 ⁻³
						40×10 ²	
Wu et al. [120]	PPY	MWCNTs	1	In-situ chemical oxidation polymerization		With coating 0.5 % PSS/ pyrrole monomer 91×10 ²	
Li et al. [121]	PEDOT:	MWCNT	0	spin coating		2.80	
	P55		0.2			9.16	
Hermant et al. [122]	PEDOT: PSS	SWCNTs (HiPCO)	2.2	In-situ reduction		100	0.32
	VE		0.5			1.94×10-4	
Oraca hada aka da	VE	NAVONIT-	1			2.94×10 ⁻²	
Grysnchuk et al.	VE	(CVD)	2	sonication	10-10	4.05×10 ⁻²	
[0]	VEUH	(0.2)	0.5			1.30×10-4	
	VE/EP		0.5			3.84×10 ⁻²	
Wang et al. [125]	Ероху	SWCNTs	0.5-7	solution casting		9×10 ⁻¹¹ _1.5×10 ⁻⁶	
Shafi Ullah Khan[126]	Ероху	MWCNTs	0.05 Random 0.05 Parrallel to alignment 0.05 Prependicular to alignment	sonication		10 ⁻⁷ 10 ⁻⁵ 10 ⁻⁶	

has been used for fabrication. As it can be understood from Table 6, the percolation threshold of CNT/epoxy has been reported from 0.0025 wt% to 1 w% based on the CNT type and fabrication process.

The use of CNTs with high aspect ratios have led to a good dispersion of CNT in polymers at low concentration. This subject has been studied by Thostenson et al. [124]. Recent studies show that the electrical properties of CNT-based composites depends strongly on factors such as polymer matrix, method of processing, types of CNT and especially CNT alignment[125,126]. Through aligning CNTs, Khan et al. [126] achieved electrical conductivities from 10⁻⁷ S/m for composites with random orientation CNTs inside the polymer to 10⁻⁵ S/m for the CNT/polymer nanocomposites with parallel orientation CNTs aligned into the polymer. Different results on the CNT-based composites originated from different employed materials and measurement techniques are reported.

B) Alternative current electrical conductivity

An overview of experimental studies on AC electrical conductivity of CNT-based composites is presented in Table 7 [10, 34, 55, 65, 117, 127, 128].

We investigated the real part of complex electrical conductivity in frequency range of 10⁻²-10⁶ Hz at room

temperature (Table 7). In all nanocomposite samples the phase lag between the measured impedance and AC voltage used at low frequencies was negligible. So, the impedance at 0.01 Hz frequency was equal to the direct current (dc) resistance and the percolation threshold was reported to be about at this frequency.

According to equation 1, the AC electrical conductivity is directly related to the permittivity and frequency, and increases by increasing them [6]. Zhi Hua et al. [127] investigated that by increasing frequency from 0.3 to 18 GHz, both the real and imaginary parts of AC electrical conductivity are increased, but the increase in the electrical conductivity by increased frequency, does not have any practical benefit.

In the research done by Slepyan et al. [129], the properties of CNT-based composites in the terahertz frequency range were studied. They had compared the results obtained from the theoretical study with the experimental observations, and reported a slight difference in a wide range of frequency and temperature.

AC electrical conductivity and complex permittivity can be calculated using equation 12:

$$Z^* = \frac{U^*}{I^*}$$
(12)

Permittivity of CNT-based films and composites

CNT films have outstanding electromagnetic properties. For example, well aligned CNT films have an effective and reduced complex permittivity function [130]. Several articles have studied the complex permittivity of different types of carbon nanotubes at low frequencies (upto1GHz). The experimental results on the permittivity of CNT-based composites are shown in Table 8. Wu et al. [93] reported the extreme dependence of the permittivity on the concentration of CNTs in the polymer matrix. In general, the permittivity of homogeneous and isotropic materials is a function of frequency and temperature [131,132]. Complex permittivity of MWCNT composites is extracted as a function of frequency [133].

Watts et al. [134] found that the real part of complex permittivity of defective CNTs in polystyrene films was higher than that of graphite nanotubes at X-band frequency. Grimes et al. [135] fabricated the SWCNTs-based composite with dimensions of about $2 \times 5 \times 0.5$ (mm) using the SWCNTs with aspect ratio about 100. It was observed that the dielectric response was very sensitive to the concentration of metallic CNTs and the permittivity of about 100 was achieved. Both theoretical and experimental methods imply that the percolation threshold strongly depends on the aspect ratio and filler particles [136, 137].

Wu et al. [93] studies showed an extremely dependence of real and imaginary parts of relative permittivity on the frequency and concentration of CNTs in the polymer matrix. They prepared samples through addition of MWCNTs between 0.5 to 25.9 volume fraction in an epoxy polymer in frequency range of 10 MHz to 20 GHz, and found that both parts of relative permittivity at megahertz frequency were very high but at gigahertz frequency they showed extremely low values.

The results of experimental studies performed on the permittivity of CNT-based composite are given in Table 8 [7-9,21,55,65,93,94,101,127,133,134,138-146].

Both real and imaginary parts of complex relative permittivity of CNT-based composites are functions of frequency. At low frequencies, the permittivity of CNT-based composites is very high. Grimes et al. [21] with SWCNT/PEMA composites in frequency range between 0.5 to 5.5 GHz with 23% CNT weight fraction reached to the permittivity with real and imaginary parts of between 135 to -27 and 300 to 40, respectively. Also, for MWCNT/PVDF composites having 1% CNT weight fraction in frequency range between 0.1×10^{-6} to 1×10^{-3} Hz, Ghallabi et al. [147] obtained the permittivity with the real part of about 3700 to 6500 at 20°C. For having a nanocomposite with high electrical properties, a low permittivity, especially in its imaginary part, is needed. In most of nanocomposites the imaginary part of permittivity is smaller than its real part [8, 94, 134, 143]. Whereas, according to equation 6, the increase of the loss factor (imaginary part of permittivity ε) of nanocomposites leads to materials with high absorption properties. Nanocomposites with high absorption properties are not suitable for use in electromagnetic waves reflector structures. Although, Huang et al. [94] showed that the imaginary part of permittivity could be higher than its real part for a high content of SWCNT (15 wt%) in epoxy resin in frequency range between 8.2 to 12.4 GHz. Also, they found that $tan(\delta)=1.42$, a more appropriate value compared to that for other samples of nanocomposites.

Researcher Matr		CNT CNT Weight method of Free		Frequency	Composit conducti	Year			
			fraction (wt%)	Processing		real	imaginary		
Martin et al.	Ероху	MWCNTs (CVD) d=50 nm,	0.01		1 to 10⁵ Hz	2.5 × 10 ⁻⁹ to s tempe	5×10 -5 (room rature)	2004	
[10]		I=43±3 um I/d=340		polymerization		3 × 10 ⁻³	(140°c)	-	
			0			6×10 ⁻¹² t	o 8×10 ⁻¹³		
Logakis et al. [34]	PET	PET MWCNT	0.5	In-situ	10⁻¹ to 10⁰ (Hz)	8×10 ⁻³ t	o 1×10 ⁻²	2010	
			2.5			6×	10-1		
			0	_		2×10-4 to	o 3 ×10-1		
			0.5			4×10 ⁻⁴ to	3.5×10 ⁻¹		
			1			9×10 ⁻⁴ t	o 6×10 ⁻¹	_	
Kim et al.	ρημα	MWCNT	2		10 ⁻³ to 1.8	5×10 ⁻³ to 8×10 ⁻¹		2006	
[65]	IDDA		3			2×10 ⁻² to 1		2000	
		4			1×10 ⁻² to 0.5		-		
		5			3×10-2 to 1				
			8			2.5 to 10			
		SWCNT (HiPco)		0	_		~0.5× 10 ⁻	¹⁵ to × 10 ⁻⁷	
Melachian			0.5	In-situ polymerization		~2 × 10 ⁻⁵ to8× 10 ⁻⁵		2005	
et al. [117]	PI	d= 0.9–1.2	1		lymerization 10-2 to 10 ⁶ Hz	~2 × 10 ⁻⁴			
		=~3	2			~10 ⁻³			
			5			~5×	10-3		
			4	-		1.08×10 ⁻¹ to 5.50	8.1×10 ⁻² to 4.11	_	
ZhiHua et	РЕМА	SWCNT	8	Theoretically	3×10 ⁻¹ to 18	< 1.25 to 5.25	< 1.25 to 6.6	2008	
al. [127]			10		GHz	< 1.25to 5.90	< 1.25 to 7.2	2000	
- Demonstrat			13	he elter		< 1.25 to 7.12	< 1.25 to 8.15		
[128]	Ероху	MWCNT	2.5 In-situ 10 ⁻² to10 ⁶ Hz		1×	10 ⁻²	2003		
			0.3			1.99	to 2.2		
			0.5]		2.27 to 2.7 2.62 to 3.1]	
Define the		MAYONIT	1		10 1 1- 10				
Rafiee et al.	EP/VE	(CVD)	1.5	In-situ polymerization	12.4 to 18	12.4 to 18 3.65 to 4.7		to 4.7	2014
[]			2		0.12	4.14	to 5.5		
			2.5			6.2 t	o 8.6		
			3			8.27 t	o 11.3		

Table 7. AC electrical cond	luctivity of CNT-based composites
-----------------------------	-----------------------------------

In the samples having 3% volume fraction of CNTs fabricated by Liu et al. [138] at frequency of 1 GHz, the real and imaginary parts of relative permittivity improved with change in the types of CNTs (single, double and multi-walled) and diameter. For the mixture of silicone and toluene with SWCNTs with diameters between 1 to 2 nm, they reported the values of 16 and 18, respectively, for the imaginary and real parts of permittivity. The imaginary and real parts of permittivity for DWCNTs with diameters between 2 to 4

nm, were 33 and 32 and for MWCNTs with diameters between 8 to 15 nm, were 400 and 360, respectively. According to equation 6, the loss tangents of these samples were found to be 0.571, 1.031 and 1.111, respectively. Also, the dielectric dissipation factor for the sample with combination of the CNTs/epoxy was reported to be 0.44 to 0.45 [144].

The loss tangent for the MWCNTs/PVC nanocomposite having 5% volume fraction of MWCNT at frequency 12.4 GHz was reported to be about 0.071

Table 8.complex relative permittivity of CNT-based composites.

			Max	CNT weight		frequency	Complex relative permittivity		
Researcher	Matrix type	CNT type	Conductivity (S/m)	fraction (wt%)	Method	(GHz)	Real (e _r p-p)	lmaginary (e _t p-p)	Year
		MWCNTs(^)	-	-		0.75–1.5	275 to 195	-	
Chin et al. [7]	PVA	MWCNTs (Random)	-	-	-	0.75–1.5	130 to 75	-	2011
		MWCNTs (çç)	-	-		0.75–1.5	>60	-	
				0			~2	~0	
				5			~7	~2	
Liu et al. [8]	PU	SWCNT	2.2	10	Solution	8.2-12.4	~17 to 19	~9 to 11	2007
				15			~30 to 32	~17 to 22	
				20			32 to 38	~24 to 26	
Saini et al. [9]	PS	PANI coated MWCNT (CVD)	-	10 to 30	In-situ oxidative polymerization route	12.4 to18.0	19 to 44	31 to 87	2011
				0			~2.5	~2	
				4		0.5 to 5.50	~9 to 6	~5	2007
				8			~20 to 10	~14 to 8	
			-	10 experiment			~25 to 10	~20 to 14	
Grimes et al.		SWCNT		10 theory			~23 to 15	~120 to 16	
[21]	PEMA	arc-discharge		13	Manually mixed		~63 to 3	~105 to 38	
				15			~80 to -7	~130 to 35	
				18			~115 to -15	~205 to 40	
			~0.4	23	-		~135 to -27	~300 to 40	
				23Theory			~100 to -18	~420 to 50	
Kim et al [65]				0 to 8	Solution	0.001 to 1.8	3 to 1/10	0.1 to 2x104	2006
		MWCNT	-			0.001101.0	-	0.1102-10	- 2004
Wu et al. [93]	Ероху			4.7	-	3 to 18	5	0.7 to 1.5	
				11.4			14 to 20	4 to 7.5	
		SWCNT (modified arc-discharge)		0.5	·	8.2 to 12.4 X-band	~6	~1	- 2007
	Ероху			1			~7.5	~3	
Huang et al.			-	5			~17 to 15	~10 to 7	
[01]				10			~201022	~191014	
			20	15			~67 to 42	~75 to 60	
		CNTs	2.6×10 ⁴	30		8.0–12.0	14 25 to 11 59	57 to 579	
Sharma et al.	PANI		4.7.401	50	Solution casting		39.12 to	23.47 to	2009
[101]		CN IS	1.7×10°	50	-		33.34	25.34	
		-	-	0			3.87 to 3.25	0.52	
	PEMA			4	Theory	0.30 18	6.45 to 5.50	4.87 to 4.11	- 2008
ZhiHua et al.		SWCNT	-	8			6.6 to 9	4.15 to 4.85	
[127]				10			7.15 to 10.7	5.9 to 9.1	
				13			8.15 to 13.7	7.2 to 12.30	
	Silicone			2			~9 to 17	~∪.∠ ~0.8 to 5	2010
Liu et al. [138]	and Toluene	nd SWCNTs iene	-	3	Sonication	0.001 to 1	~13 to 28	~1.5 to 16	
				4			~48 to 17	~46 to 2.6	
				5			~24 to 100	~0.5 to 200	

				1			~5.4	~0.8	
Si	Silicone			2			~9 to 14	~0.7 to 2	
Liu et al. [138]	and	DWCNTs	-	3	Sonication	0.001 to 1	~11 to 32	~2 to 33	2010
	Toluene			4			~18 to 95	~180 to 4.8	1
				5			~20 to 130	~250 to 6	
				1			~9	~0.2 to 0.3	
	Silicone			1.5	Sonication		~13 to 19	~1 to 2	
Liu et al. [138]	and	MWCNTs	-	2		0.001 to 1	~7 to 40	~2.5 to 30	2010
	Toluene			3	molding		~32 to 360	~17 to 400	
				4			~75 to 500	~50 to 280	
				0			~3	~0.08 to 0.11	
Tianjiao et al.	_	MWCNTs		0.5			~3.5	-	
[139]	Epoxy	(CVD)	-	1	-	8.2 to 17.8	~4	~0.08 to 0.11	2011
				2			~5.4 to 7.8	~0.15 to 0.22	
				0			~2.95 to 3.03	~3.02 to 3.05	
Tianjiao et al.		Cobalt-MWNTs		0.5			~3.02 to 3.05	~0.08 to0.11	
[142]	Epoxy	(CVD)	-	1	_	8.2 to 17.8	~3.05 to 3.13	~3.02 to 3.05	2011
				2			~3.18 to 3.34	~0.11 to 0.15	
			0.05	0.5			-	-	
lunai at al			1.5	1			-	-	
[143]	Cellulose	MWCNT	38	2.4	Suspension	18 to26.5	30 to 38	0 to 7	
	composite		150	4.8	mixing	K-band	38 to 54	68 to 83	-
	ραροιο		370	9.1			28 to 112	145 to 193	
			671	16.7			144 to 222	212 to 286	
				1:4 ratio films	Polymerization		8.5 to 9.35	0.05 to 0.18	
Watts et al.	PS	MWCNT	_	1:4		8 to 12	118 to 60	0.36 to 1.1	2003
[134]				1:6		X-band	45 to 17	0.5 to 1.28	
				1:8			27 to 14	0 to 0.3	
Shen et al.		MWCNT With Iron			Pyrolysis of	2	12	2.04	2005
[140]	-	coated	-	-	carbonyl	2 to 18	12 to 4.7	0.65 to 3.5	2005
				5:100			~9 to 7	~1.75 to 0.5	
Hou et al.				8:100		9 2 to 12 4	~10 to 7	~2 to 0	2012
[141]	(FVC)	WWWCINIS	-	10:100	-	0.21012.4	~10 to 13.6	~2.5 to 3.8	2012
				12:100			~14 to 9	~4.9 to -1.8	
Hou et al. [141]	(PVC)	cobalt:MWCNTs	-	Co:MWCNTs:PVC 0.2:5:100	-	~8.2 to 12.4	~5.9 to 6.9	~2.3 to 3	2012
Hou et al. [141]	(PVC)	La:MWCNTs	-	La:MWCNTs:PVC 0.2:5:100	-	~8.2 to 12.4	~12 to 10.35	~5.25 to 4	2012
Hou et al. [141]	(PVC)	Ni:MWCNTs	-	Ni:MWCNTs: PVC 0.2:5:100	-	~8.2 to 12.4	~7.3 to 5.5	~3.2 to 2.2	2012
Al Moayed et al. [146]	-	SWCNT	-	-	-	8 to 40 X, Ku, K, Ka	~80 to 20	~200 to 50	2007
Al Moayed et al. [146]	-	MWCNT	-	-	-	8 to 40 X, Ku, K, Ka	~20 to 14	~70 to 15	2007
				1			6.3	1.2	
Kim et al.	Epoxy/	CNT (Thermal CVD process)	-	2	Poll milling	82~124	9 to 9.5	4 to 4.5	- 2010
[139]	fibers			3	Roll milling	0.2 ** 12.4	17.1 to 18.9	17.5 to 22	
		- *		4			26.7 to 29.7	40.5 to 50	

				0.5			7.4 to 7.8	2 to 2.2	
Kim et al.	Epoxy/	CNT		0.75		0.0 40.4	9 to 9.5	4.1 to 5.2	0040
[142]	E-glass fibers	(Thermal CVD process)	-	1	Roll milling	8.2~12.4	13.3 to 15.2	13.7 to 17.4	2010
		p)		1.5			25.5 to 28	35.2 to 45.2	
				1.25			5	1	
	Nylon 6,6			2.5			9	2.5	
Challa et al.	t=2.0 cm	MWCNT	-	5	Melt extrusion	8–10	14 to 15.5	5	2008
[100]	w=30 cm			10			25 to 27	16	
				20			47.5 to 54	58 to 75	
Zhao et al. [144]	Epoxy	MWCNT	-	10	_	8.2~12.4	13.85 to 14.87	5.85 to 6.47	2008
				0			4.5 to 5.5	0 to 0.5	2011
Han et al.	_	MWCNT (CVD)	-	5.2	_	1 to 14	20 to 48	6 to 24	
[145]				10.4			15 to 85	30 to 162.5	
		MWCNT		1			1800 to 3000	-	
	PVDF	Barium titanate	-	20	Mixing and melting	0.1×10 ⁶ to 1×10 ⁻³	in -50°C 3700 to 6500		- 2010
Ghallabi et al.							in 20°C	-	
[147]							4050 10 9900 in 100°C	-	
							4600 to 10900	_	
							in 120°C		
				0.3	-		3.9 to 3.2	2.9 to 2.2	
	EP/VE	EPWE (CVD)	MWCNT	0.5	In-situ polymerization	12.4 to 18	4.3 to 3.95	3.3 to 2.7	2014
Pation of al				1			6.3 to 5.7	3.8 to 3.1	
[55]				1.5			7.2 to 6.8	5.3 to 4.7	
				2			8.8 to 7.4	6 to 5.5	
				2.5			11.5 to 10.5	9 to 8.6	
				3			14.6 to 13.7	12 to 11.3	

[138], for the SWCNT/epoxy nanocomposite was 0.636 [94], for the SWCNT/PEMAnanocomposite with 4% volume fraction of SWCNT was about 0.833 [62] and for the MWCNT/epoxy/E-glass fibers with 4% volume fraction of MWCNT was found to be 1.683 [139]. Grimes et al. [21] also for the SWCNT/ PEMA nanocomposite with 13% volume fraction of reinforcement reported a high loss tangent about of 12.66.

In another research, by incorporation of 3 wt% of multi-walled CNTs into vinyl ester resin the real part and imaginary part of permittivity at 12.4 GHz frequency were obtained 14.6 and 12, respectively [55].

Permeability of CNT-based composites

Experimental observation on the permeability of CNT-based composites is shown in Table (9) [7, 9, 139-141, 144, 145]. Permeability can lead to a decrease in skin depth and reflection losses [9]. Chin et al. [7] obtained the real part of permeability nearly

constant and equals 1 in the frequency domain between 0.75 and 1.5 GHz, where CNTs were aligned in the electric field. The permeability of investigated materials increased, respectively, only 0.13 and 0.1 for the vertical and random arrangements of CNTs. The samples with the permeability about 1 are known as materials with non-magnetic properties.

Zhao et al. [144] reported the range of 0.06 to 0.11 for the magnetic dissipation factor ($tg\delta\mu=\mu'\mu''$) at X-band frequency.

According to the results presented in Table (9), the CNT-based composites are materials with low magnetic properties.

CONCLUSION

The influence of some factors, including CNT type (SWCNT, DWCNT and MWCNT), chirality (arm-

		Matrix			Complex relati		
Researcher	Matrix type	CNT type	CNT weight fraction (wt%)	Frequency (GHz)	Real (e _r p-p)	Imaginary (e, p-p)	Year
	PVA	MWCNTs (^)			1	-	1
Chin et al. [7]	PVA	MWCNTs (Random)		0.75–1.5	1.1	-	2011
	PVA	MWCNTs ()			1.13	-	1
		MWCNTs	0		~3	~0.08 to 0.11	
Tianjiao et al.	_		0.5		~3.5	-	
[139]	Ероху	CVD	1	- 8.2 to 17.8	~4	~0.08 to 0.11	2011
			2		~5.4 to 7.8	~0.15 to .22	
		Co-MWNTs CVD	0		~2.95 to 3.03	~3.02 to 3.05	2011
Tianjiao et al.			0.5		~3.02 to 3.05	~0.08 to0.11	
[139]	Ероху		1	- 8.2 to 17.8	~3.05 to 3.13	~3.02 to 3.05	
			2		~3.18 to 3.34	~0.11 to 0.15	
Shen et al. [140]	-	MWCNT With Iron (nanogranule)-coated	-	2	2.64	1.63	2005
Shen et al. [140]	-	MWCNT With Iron (nanogranule)- coated	-	2 to 18	2.62 to 0.75	1.62 to 0.4	2005
	(PVC)	MWCNTs	5:100		~1 to 1.2	~0 to 0.2	2012
Hou et al. [141]			8:100	9.2 to 12.4	~1.58 to 1.22	~0.05 to 0.33	
			10:100	0.2 10 12.4	~1.25 to 1.05	~-0.1 to 0.17	
			12:100		~1.52 to 1.16	~0.15 to 0.96	
Hou et al. [141]	(PVC)	Cobalt:MWCNTs	Co:MWCNTs:PVC 0.2:5:100	~8.2 to 12.4	~1.1 to 1.25	~-0.06 to 0.07	2012
Hou et al. [141]	(PVC)	La:MWCNTs	La:MWCNTs:PVC 0.2:5:100	~8.2 to 12.4	~1.46 to 0.96	~-0.1 to 0.18	2012
Hou et al. [141]	(PVC)	Ni:MWCNTs	Ni:MWCNTs:PVC 0.2:5:100	~8.2 to 12.4	~1.2 to 1.4	~0.05 to 0.16	2012
Saini et al. [9]	Ps	PANI coated MWCNT (CVD)	10 to 30	12.4 to18.0	1.01 to 1.2	0.05 to 0.6	2011
Zhao et al. [144]	Ероху	MWCNT	10	8.2 ~ 12.4	1.02 to 1.14	0.07 to 0.11	2008
			0		0.9 to 2.5	0.4 to 0.8	2011
Han et al. [145]		MWCNT (CVD)	5.2	1 to 14	0.9 to 2.6	0.4 to 1.1	
			10.4] [0.5 to 2.5	0.7 to 1.1	

Table 9. complex relative permeability of CNT-based composites.

chair, zigzag and chiral), dimension (diameter, length and aspect ratio), structure (metallic or semiconducting), method of CNTs production (CVD, arc-discharge, hipco and etc.), method of processing (solution, melt mixing and in-situ polymerization and etc.), type of polymers (insulating or conductive), volume fraction, CNTs connection in the solution (conductive network), orientation of CNTs in polymer and disentanglement of CNT agglomerates on the electrical and electromagnetic properties of CNT-based composites were discussed. Moreover, in creating the electrical circuits of the CNT-based composites some effective assumptions were considered. With these assumptions, however, researchers proposed equivalent circuits for SWCNTs interconnects, bundle of SWCNTs, DWCNTs and MWCNTs, but they cloud not offer suitable and highly precise electrical models for the CNT nanocomposites.

In contrast to the maturity of conducted simulations on mechanical behavior of CNT-based nanocomposites, a significant lack of simulation activities is identified for the specific aspect of electrical/electromagnetic behavior.

The subjects reviewed in this article indicated that in extracting the electrical properties, most of the researchers used the experimental methods, rather than theoretical, modeling and simulation methods. Consequently, this issue is required to be further addressed in future studies.

In the majority of articles published on CNT-based composites, conductive polymers are less used to fabricate the composites. Although, a higher electrical conductivity was achieved by using insulating polymers instead of conductive polymers, studies on achieving the optimum conditions for constructing conductive CNT nanocomposites with special characteristics are still carrying out.

According to the data extracted from Tables 6-9, the CNT-based composites fabricated by applying the mentioned parameters are good replacements which can be used to make the strong structures with low weight, good conductivity and relative absorption and reflection coefficients. Finally, these materials can be employed as both electromagnetic waves absorbing and reflecting structures.

Besides, it is evident that the influence of functionalization on the electrical/electromagnetic properties of CNT nanocomposites is required to be analyzed more deeply as a challenging issue for future studies.

REFERENCES

- 1. Iijima S (1991)Helical microtubules of graphitic carbon. Nature 354: 56-58
- Qing YC, Zhou WC, Luo F, Zhu DM (2010) Electromagnetic and absorbing properties of multi-walled carbon nanotubes/epoxy-silicone coatings. J Inorg Mater 15: 181-185
- Zhao Y, Yuan L, Duan Y (2010) Study on the electrical behavior of MWCNTs in GF/epoxy composites J Nanosci Nanotechnol 10: 5333-5334
- Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. J Mater Design 88: 269-277
- Marconnet AM, Yamamoto N (2011) Nanocomposites with high packing density. J ACS Nano 5: 4818-4825
- 6. Saini P (2013) Electrical properties and

electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. In: Thermoset nanocomposites. Ed.: Mittal V, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 211-237

- Chin W, Lu CL, Hsu WK (2011) A radio frequency induced intra-band transition in carbon nanotubes. Carbon 49: 2648-2652
- Liu Z, Bai G, Huang Y, MaY, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/ polyurethane composites. Carbon 45: 821-827
- Sainia P, Choudhary V, Singhe BP, Mathure RB, Dhawana SK (2011) Enhanced microwave absorption behavior of polyaniline-CNT/ polystyrene blend in 12.4-18.0 GHz range. Synth Met 161: 1522-1526
- Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol 64: 2309-2316
- Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44: 5893-5899
- Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos SciTechnol 66: 1285-1288
- Kim KH, Jo WH, A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47: 1126-1134
- Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152: 349-352
- Jun SC, Choi JH (2007) Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology 18: 255701
- Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z (2012) Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable

zinc-air battery. Electrochim Acta 69: 295-300

- Qiao Y, Li CMS, Bao J, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170: 79-84
- Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met159: 260-266
- Sawatsuk T, Chindaduang A, kung C, Pratontep S, Tumcharern G (2009) Dye-sensitized solar cells based on TiO₂-MWCNTs composite electrodes: Performance improvement and their mechanisms. Diam Relat Mater 18: 524-527
- 20. Zhao X, Park JY, Huang S, Liu J, McEuen PL (2005) Band Structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95: 146805
- 21. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319, 460-464
- 22. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39: 279-285
- 23. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund P (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6: 1141-1145
- Park JG, Louis J, Cheng Q, Bao J, Smithyman J, Liang R, Wang B, Zhang C, Brooks J, Kramer L, Fanchasis P, and Dorough D (2009) Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnol 20: 415702-415708
- 25. Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15: 1415
- 26. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and

EMI shielding. Mater Chem Phys 113: 919-926

- 27. Saini P (2015) Intrinsically conducting polymerbased blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects, in fundamentals of conjugated polymer blends, copolymers and composites: Synthesis, properties and applications, John Wiley & Sons, Inc., Hoboken, NJ, USA
- 28. Saini P, Arora M (2012) Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: New polymers for special applications, Ed. De Souza Gomes A, InTech, Croatia, 71-112
- 29. Zhao T, Hou C, Zhang H, Zhu R, She S, Wang J, Li T, Liu Z, Wei B (2014) Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci Rep 4: 5619
- Li H, Lu W, Li J, Bai X, Gu C (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95: 86601
- Yan Q, Wu J, Zhou G, Duan W, Gu B (2005) Ab initio study of transport properties of multiwalled carbon nanotubes. Phys Rev B 72; 155425
- 32. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90: 5308-5317
- McEuen PL, Fuhrer MS, Park HK (2002) Singlewalled carbon nanotube electronics. IEEE, doi:1536-125X/02
- 34. Logakis E, Pissis P, Pospiech D, Korwitz A, KrauseB, Reuter U, Potschke P (2010) Low electrical percolation threshold in poly(ethylene terephthalate)/multi-walled carbon nanotube nanocomposites. Eur Polym J 46: 928-936
- Dosoudil R, Ušák E, Olah V (2010) Automated measurement of complex permeability and permittivity at high frequencies. J Electer Eng 61: 111-114
- Verma P, Saini P, Malik RS, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon

nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 89: 308-317

- Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116: 13403-13412
- Ku H (2003)Curing vinyl ester particle-reinforced composites using microwaves. J Compos Mater, doi: 10.1177/0021998303036266
- Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9: 814-818
- 40. Liu YJ, Chen XL (2003) Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 35: 69-81
- Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans, doi:10.1109/ TNANO.2003.808503
- Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans, doi:10.1109/ TNANO.2002.806823
- Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Devic L, doi:10.1109/LED.2006.873765
- 44. Naeemi A, Meindl JD (2007) Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE T Electron Dev, doi:10.1109/ TED.2006.887210
- 45. Nieuwoudt, A, Massoud Y (2006) Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE T Electron Dev, doi:10.1109/TED.2006.882035
- Massoud Y, Nieuwoudt A (2006) Accurate resistance modeling for carbon nanotube bundles in VLSI interconnect. IEEE Conf Nanotechnology, doi:10.1109/NANO.2006.247631
- 47. Pu SN, Yin WY, Mao JF, Liu QH (2009)

Crosstalk prediction of single- and doublewalled carbon-nanotube (SWCNT/DWCNT) bundle Interconnects. IEEE T Electron Dev 56: 560-568

- de Pablo PJ, Graugnard E, Walsh B, Andres RP, Datta S, Reifenberger R (1999) A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes. Appl Phys Lett 74: 323-325
- 49. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79: 1172-1174
- 50. Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. Interconnect Technol Conf, doi:10.1109/IITC.2006.1648696
- Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Singleelectron transport in ropes of carbon nanotubes. Science 275: 1922-1925
- 52. Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE T Electron Dev 55: 2574-2582
- 53. Hosseini A, Shabro V (2010) Thermally-aware modeling and performance evaluation for singlewalled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron Eng 87: 1955-1962
- 54. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50: 689-698
- 55. Rafiee R, Sabour MH, Nikfarjam A, Taheri M (2014) The influence of CNT contents on the electrical and electromagnetic properties of CNT/vinylester, J Electron Mater 43: 3477-3485
- Li C, Thostenson ET, Chou TW (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68: 1445-1452
- 57. Yi YB Berhan L (2004) Statistical geometry of

random fibrous networks, revisited: Waviness, dimensionality, and percolation. J Appl Phys 96: 1318-1327

- Mendes MJ, Schmidt HK, Pasquali M (2008) Brownian dynamics simulations of singlewall carbon nanotube separation by type using dielectrophoresis. J Phys Chem B 112: 7467-7477
- Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393: 49-52
- Prabhakar RB (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7: 1-29
- 61. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79: 1172-1174
- 62. Solymar L, Walsh D (2004) Electrical properties of materials. Oxford University Press
- 63. Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly (methyl methacrylate) and multiwalled carbon nanotube nanocomposites. Appl Phys Lett 88: 143114
- 64. Wu TM, Lin SH (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by In situ chemical oxidative polymerization. J Polym Sci Pol Phys 44: 1413-1418
- 65. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43: 23-30
- 66. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A 41: 1345-1367
- Kuilla, T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35: 1350-1375
- Lewandowska M, Krawczyniska AT, Kulczyk M, Kurzydłowski KJ (2009) Structure and properties of nano-sized Eurofer 97 steel obtained by hydrostatic extrusion. J Nucl Mater 386-8: 499-502

- 69. Mamunya Y, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M (2008) Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos Sci Technol 68: 1981-1988
- 70. Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/ nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176: 175-182
- Yan KY, Xue QZ, Zheng QB, Hao LZ (2007) The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 18: 255705
- 72. Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimential sticks system. Phys Rev Lett 52: 1465-1468
- 73. Lagarkov AN, Sarychev AK (1996)
 Electromagnetic properties of composites containing elongated conducting inclusions.
 Phys Rev B 53: 6318-6336
- Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Critical concentration in percolating systems containing a high-aspectratio filler. Phys Rev B 53: 6209-6214
- 75. Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O (2001)Transport properties of PMMA-carbon nanotubes composites. Synth Met 121: 1215-1216
- 76. Stephan C, Nguyen TP, Lahr B, Blau W, Lefrant S, Chauvet O (2002) Raman spectroscopy and conductivity measurements on polymermultiwalled carbon nanotubes composites. J Mater Res 17: 396-400
- 77. Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci Pol Phys 41: 3333-3338
- 78. Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ, Lyu SC, Lee CJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Application to electromagnetic interference

shielding. Curr Appl Phys 4: 577-580

- 79. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84: 589-591
- Chauvet O, Benoit JM, Corraze B (2004) Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42: 949-952
- Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 37: 9048-9055
- Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonatemultiwalled carbon nanotube composites. Polymer 44: 5023-5030
- Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83: 2928-2930
- Pötschke P, Abdel-Goad M, AligI, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonatemultiwalled carbon nanotube composites. Polymer 45: 8863-8870
- Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multiwall carbon nanotube composites. Compos Interf 10: 389-404
- Potschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42: 965-969
- Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43: 3247-3255
- Kim BK, Lee J, Yu I (2003) Electrical properties of single-wall carbon nanotube and epoxy composites. J Appl Phys 94: 6724-6728
- 89. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties

of epoxy nanocomposites. Carbon 43: 1378-1385

- 90. Barrau, S, Demont P, Maraval C, Bernes A, Lacabanne C (2005) Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites. Macromol Rapid Commun 26: 390-394
- 91. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, SchulteK (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47: 2036-2045
- Thostenson ET, Chou TW (2006) Processingstructure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44: 3022-3029
- 93. Wu J, Kong L (2004) High microwave permittivity of multiwalled carbon nanotube composites. Appl Phys Lett 84: 4956-4958
- 94. Huang Y, Li N, Ma Y, Du F, Li F, He X, Lin X, Gao H, Chen Y (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45: 1614-1621
- 95. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67: 922-928
- 96. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotubebased composites. Appl Phys Lett 89: 133102
- 97. Liu L, Matitsine S, Gan YB, Chen LF, Kong LB, Rozanov KN (2007) Frequency dependence of effective permittivity of carbon nanotube composites. J Appl Phys 101: 94106
- Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17: 3207-3215
- Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC (2002) Carbon nanotube-polyaniline hybrid materials. Eur Polym J 38:

2497-2501

- 100. Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl Phys Lett 85: 1796-1798
- 101. Sharma BK, Khare N, Sharma R, Dhawan SK, Vankar VD, Gupta HC (2009) Dielectric behavior of polyaniline-CNTs composite in microwave region. Compos Sci Technol 69: 1932-1935
- 102. Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: A highresolution printable conductor. Appl Phys Lett 82: 1290-1292
- 103. Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille JY, Forro L (2005) Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties. J Polym Sci Part Pol Phys 43: 1186-1197
- 104. Kymakis E, Amaratunga G (2006) Electrical properties of single-wall carbon nanotubepolymer composite films. J Appl Phys 99: 084302-7
- 105. Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RH (2005) Deformation-morphology correlations in electrically conductive carbon Nanotube-thermoplastic polyurethane nanocomposites. Polymer 46: 4405-4420
- 106. Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylesterbased hybrid resins. Compos A 37: 1252-1259
- 107. Battisti A, Skordos AA, Partridge IK (2010)
 Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70: 633-637
- 108. Grossiord N, Loos J, Laake LV, Maugey M, Zakri C, Koning CE, Hart AJ (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18: 3226-3234
- 109. Poa CH, Silva SRP, Watts PCP, Hsu WK, Kroto HW, Walton DRM (2002) Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix. Appl Phys Lett 80: 3189-3191
- 110. Li HC, Lu SY, Syue SH, Hsu WK, Chang SC

(2008) Conductivity enhancement of carbon nanotube composites by electrolyte addition. Appl Phys Lett 93: 033104

- 111. Yoshino K, Kajii H, Araki H, Sonoda T, Take H, Lee S (1999) Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites. Full Sci Technol 7: 695-711
- 112. Saeed K, Park SY (2007) Preparation and properties of multiwalled carbon nanotube/ polycaprolactone nanocomposites. J Appl Polym Sci 104: 1957-1963
- Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly(εcaprolactone). Macromolecules 40: 1538-1545
- 114. Mierczynska A, Mayne-L'Hermite M, Boiteux G (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105: 158-168
- 115. Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multiwalled carbon nanotubes composites. Europ Polym J 43: 949-958
- 116. Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly(vinylidene fluoride)/ carbon nanotube composites with a spherical substructure. Carbon 47: 2112-2142
- 117. Mclachlan DS, Chiteme C, Park C, Wish KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Pol Phys 43: 3273-3287
- 118. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Huntzler S, Roth S, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92: 4024-4030
- 119. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne, C (2003) DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36: 5187-5194
- 120. Wu TM, Chang HL, Lin YW (2009) Synthesis

- 121. Li J, Liu J, Gao C, Zhang J, Sun H (2009) Influence of MWCNTs doping on the structure and properties of PEDOT:PSS films. Int J Photoenergy, doi:10.1155/2009/650509
- 122. Hermant MC, van der Schoot P, Klumperman B, Koning CE (2010) Probing the cooperative nature of the conductive components in polystyrene/ poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) single-walled carbon nanotube composites. ACS Nano 4: 2242-2248
- 123. Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylesterbased hybrid resins. Compos A-Appl S 37: 1252-1259
- 124. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: A review. Compos Sci Technol 61: 1899-1912
- 125. Wang Q, Dai J, Li W, Wei Z, Jiang J (2008) The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68: 1644-1648
- 126. Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A 49: 26-34
- 127. Zhi Hua P, Jing Cui P, Yan Feng P, Jie Yang W (2008) Complex conductivity and permittivity of single wall carbon nanotubes/polymer composite at microwave frequencies: A theoretical estimation. Chinese Sci Bull 53: 3497-3504
- 128. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36: 5187-5194
- 129. Slepyan GY, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Electromagnetic properties of composite materials containing carbon nanotubes. URSI International Symposium on Electromagnetic Theory,

Polyolefins Journal, Vol. 4, No. 1 (2017)

doi:10.1109/URSI-EMTS.2010.5637292

- 130. Kozlowski G, Kleismit R, Boeckl J, Campbell A, Munbodh K, Hopkins S, Koziol K, Peterson T (2009) Electromagnetic characterization of carbon nanotube films by a two-point evanescent microwave method. Physica E 41: 1539-1544
- 131. Brown WF (1956) Dielectrics, Springer, Berlin, Heidelberg
- 132. Mangalaraj D, Radhakrishnan M, Balasubramanian C (1982) Dielectric and AC conduction properties of ion plated aluminum nitride thin films. J Phys D Appl Phys, doi:10.1088/0022-3727/15/3/012
- 133. Challa RK, Kajfez D, Demir V, Gladden JR, Elsherbeni A (2008) Characterization of multiwalled carbon nanotube (MWCNT) composites in a waveguide of square cross section. IEEE. Microwave wireless comp lett 18: 161-163
- 134. Watts PCP, Ponnampalam DR, Hsu WK, Barnes A, Chambers B (2003) The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band. Chem Phys Lett 378: 609-614
- 135. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319: 460-464
- 136. Celzard A, McRae E, Deleuze C (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53: 6209-6214
- 137. Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43: 3331-3336
- 138. Liu L, Kong LB, Yin WY, Chen Y, Matitsine S (2010) Microwave dielectric properties of carbon nanotube composites. Carbon Nanotubes, doi: 10.5772/39420
- 139. Tianjiao B, Yan Z, Xiaofeng S, Yuexin D (2011) A study of the electromagnetic properties of cobaltmultiwalled carbon nanotubes (Co-MWCNTs) composites. Mater Sci Eng B 176: 906-912
- 140. Shen X, Gong RZ, Nie Y, Nie JH (2005) Preparation and electromagnetic performance of

coating of multiwall carbon nanotubes with iron nanogranule. J Magn Mater 288: 397-402

- 141. Hou C, Li T, Zhao T, Zhang W, Cheng Y (2012) Electromagnetic wave absorbing properties of carbon nanotubes doped rare metal/pure carbon nanotubes double-layer polymer composites. Mater Design 33: 413-418
- 142. Kim JB, Byun JH (2010) Influence of the CNT length on complex permittivity of composite laminates and on radar absorber design in X-band. Nanotechnology, doi: 10.1109/ NANO.2010.5697804
- 143. Imai M, Akiyama K, Tanaka T, Sano E (2010) Highly strong and conductive carbon nanotube/ cellulose composite paper. Compos Sci Techno 170: 1564-1570
- 144. Zhao DL, Li X, Shen ZM (2008) Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Nicoated and Ag filled carbon nanotubes. Compos Sci Technol 68: 2902-2908
- 145. Han M, Deng L (2011) High frequency properties of carbon nanotubes and their electromagnetic wave absorption properties. In: Carbon nanotubes applications on electron devices, In Tech.