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INTRODUCTION
Polyethylene (PE), the most important member of 
polyolefins family [1, 2], is frequently used for agri-
cultural film purposes such as greenhouse, mulching, 
tunnel film, etc. [3]. The frequent use of PE is due to its 
convenient properties such as low cost, easy process-
ability, excellent electrical insulation, chemical resis-
tance, toughness, flexibility, transparency in thin films 
and freedom from odor and toxicity [4, 5]. Linear PEs 

are produced by the copolymerization of ethylene and 
α-olefins, e.g., 1-butene, 1-hexene and 1-octene, with 
either Ziegler–Natta (Z-N), metallocene, Phillips or 
other catalysts [6]. It is well known that heterogeneous 
Z–N catalysts polymerize ethylene/α-olefin copoly-
mers with a broad chemical composition distribution 
(CCD) [7-9]. In contrast, homogeneous metallocenes 
are single-site catalysts which produce very uniform 
polymers with a narrow CCD [10-13]. However, there 
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ABSTRACT

In this work, the role of comonomer content of 1-hexene-medium density polyethylene (MDPE) copolymer, 
synthesized using Phillips catalyst, on thermal behavior parameters such as: crystallization, melting temperature 
and thermal degradation was investigated in detail. The copolymer was fractionated to homogenous short-chain 
branching (SCB) fractions by "preparative temperature rising elution fractionation" (P-TREF) method and then it 
was subjected to thermal analyses. A broad chemical composition distribution (CCD) in terms of SCB content and 
molecular weight (Mw) was observed by P-TREF and gel permeation chromatography (GPC), respectively. Based 
on P-TREF results, a parabolic relationship between methylene sequence length (MSL) and elution temperature 
(ET) was presented. Differential scanning calorimetry (DSC) showed distinct, well-defined melting peaks over a 
22 °C temperature range for SCB contents of about 3-12 (br/1000 C). The variations in physical characteristics 
such as melting temperature (Tm), crystallinity (Xc), crystallization temperature (Tc) and lamellae thickness (Lc) 
against SCB content were correlated. Thermogravimetric analysis (TGA) suggested linear relationships between 
the temperature at maximum degradation rate (Tmax) as well as the degradation initiation temperature (T5%) versus 
SCB content. Moreover, the TGA curves exhibited distinct differences at both initiation and propagation stages of 
thermal degradation at dissimilar comonomer contents. Polyolefins J (2014) 1: 117-129
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is hardly any report on the role of Phillips catalyst on 
the microstructure of ethylene/α-olefin copolymers 
[14-16].

Specifications of the catalyst, reactor processing  
technology and conditions of the manufacturing process 
mainly configure the microstructure of PEs. Resins of 
similar densities might exhibit significant differences 
in comonomer content and its distribution, at both 
the intermolecular and intramolecular levels [17].  
Besides, molecular structure parameters includ-
ing molecular weight (Mw) and molecular weight  
distribution (MWD), branching parameters including 
branch content, branch length, and branch distribution 
will normally determine the ultimate property of PE 
[18]. The SCB content and the short-chain branching  
distribution (SCBD) of an ethylene/α-olefin copolymer  
are key microstructural constraints that determine resin 
performance and applications [19-21].

There are many reports in the literature which inves-
tigate the relationship between structure and proper-
ties of PEs, e.g., the effect of chemical modification 
on crystallization [22], the role of branching structure 
on melting behavior [23] as well as melt flow index 
[24], the influence of branch length on mechanical 
properties [25], the effect of composition distribution 
on miscibility of the blends [26] and the dependency 
of thermorheological behavior on molecular structure 
[27]. Hosoda et al. have investigated a relationship 
between the lamellae thickness distribution and the 
mechanical properties of PE. They observed a higher 
impact strength at narrower lamella thickness distribu-
tion [28]. Also Nittaa and Tanaka have illustrated that 
both SCB content and molecular weight of ethylene-
1-hexene polymers affect both the α and β relaxation 
peaks [29].

Different studies show that the CCD of polyethyl-
enes has some important effects on thermal properties 
[30-33]. Stark and Lofgren have worked on DSC of 
metallocene type copolymers of ethylene with 1-oc-
tene, 1-tetradecene and 1-octadecene. They suggested 
that the melting temperature is dropped by increas-
ing the comonomer content [34]. Eynde et al. have 
reported that thermal behavior of copolymers change 
in a continuous way as the comonomer content is in-
creased [35]. Zhang et al. have studied on melting 
and crystallization of "preparative temperature rising 

elution fractionation" (P-TREF) fractions of two dif-
ferent polymers. They proposed that the melting and 
crystallization temperatures and enthalpy of fusion 
(DHf) of the P-TREF fractions for a Z-N polymer are 
substantially decreased by comonomer content, while 
these properties are varied slightly for a metallocene 
polymer [36]. Ko YS et al. have stated that the physi-
cal properties of α-olefin copolymers are dependent 
on distribution of the comonomer as well as on the 
molecular weight [7]. Grieken et al. have accounted 
that by increasing the short branching coming from 
the incorporation of α–olefins of low melting points, 
crystallinity and density would consequently result 
in more flexible films which will be easier to process 
[10]. 

There are various research reports in the literature 
which have been focused on degradation of linear 
polyethylenes under different conditions such as ultra-
violet (UV) irradiation [37]; extrusion [38]; thermo-
oxidation [39, 40]; thermo [41]; artificial weathering 
[42] and environmental weathering [43]. They have 
to a large extent focused on the parameters of thermal 
degradation process, e.g., the effects of operational 
parameters [44-46] and catalyst parameters [47-50]. 
However, to the best of our knowledge there is hardly 
any study on the effect of "polymer architecture" on 
the thermal degradation behavior [51, 52]. Now the 
question would be if the comonomer content affects 
the thermal degradation behavior of polyethylene co-
polymers?

In our previous works the effect of molecular weight 
[44, 53, 54] as well as the effect of ethyl branch con-
tent [55] on thermal degradation of polyolefins was 
investigated in depth. In this study the effect of co-
monomer content on thermal behavior of ethylene/1-
hexene copolymer based on Phillips catalyst is exam-
ined. To study accurately and to eliminate any other 
microstructural parameters, the ethylene/1-hexene 
copolymer (MDPE) was fractionated to homogenous 
SCB content fractions using P-TREF technique. The 
role of SCB content on crystallization, melting and 
especially thermal degradation of each fraction was 
investigated in order to find any functionality between 
the thermal behavior and the comonomer content of 
Phillips-based ethylene/1-hexene copolymer.
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flectance (ATR) spectra were recorded in the range 
of 4000–600 cm-1, 100 scans each measurement with 
resolution of 2 cm-1 using MCT detector.

Proton nuclear magnetic resonance (1H NMR) spec-
tra were recorded on a Bruker DRX 500 spectrometer 
operating at 500.13MHz for 1H NMR. C2D2Cl4 was 
employed as the solvent at 120°C. The spectra were 
referenced on the residual C2HDCl4 signal δ (1H) = 
5.98 ppm. The butyl branch content of parent poly-
mer was calculated based on 1H NMR signal integrals 
from the integral intensities of methyl protons which 
originated from hexyl comonomer (0.92 ppm) and of 
all methine and methylene protons (1.1 – 1.8 ppm) 
with estimated absolute error: ± 0.5 mol%.

Mw and MWD of the parent polymer and P-TREF 
fractions were determined by means of gel permeation 
chromatography (GPC, PL_GPC of Polymer Labora-
tories, Agilent, USA) using 1,2,4 trichlorobenzene 
(TCB) as solvent at separating column of 300×7.5 mm 
(2 PLgel_Olexies) with flow velocity of 1.0 mL/min at 
the temperature of 150 °C.

Low/high temperature thermal analyses 
Thermograms of parent polymer and P-TREF frac-
tions were assessed by a Mettler differential scanning 
calorimetry (DSC) (Toledo, Switzerland) under N2 
atmosphere, in which the samples were heated fast 
(200°C/min) to 180 °C and maintained at this temper-
ature for 5 min to erase any thermal history, and then 
cooled to room temperature (30°C) at a rate of -10°C/
min. This was immediately followed by a second heat-
ing run (10°C/min) in order to detect a complete melt-
ing behavior of the samples.

The thermogravimetric analysis (TGA) of parent 
polymer and P-TREF fractions was made using TGA 
Q 5000 of TA Instruments, under N2 atmosphere. The 
fractions experienced an isothermal condition for 5 
min at room temperature and then heated up with a 
ramp at 10°C/min to 600 °C.

RESULTS AND DISCUSSION

Characterization of parent polymer and fractions
The structural characterization of the parent polymer 

EXPERIMENTAL

Material
"Parent polymer" was an industrial grade of MDPE 
(MCH 3713, synthesized based on a special Philips 
catalyst, Aryasasol Petrochemical Company, Iran) 
which was an ethylene copolymer with 1-hexene as 
comonomer (Table 1).

Preparative temperature rising elution fractionation
The home-made P-TREF consisted of a cylindrical 
column 7 cm in diameter and 40 cm in height. This 
column was packed with seeds of an average diameter 
of 0.07 cm and submerged in an oil bath with a pro-
grammable thermostat that controlled the temperature 
of the bath. In each run a polymer solution with con-
centration of 1 wt% of parent polymer in xylene was 
introduced into the column and heated at 140°C for 2 
h and then cooled to room temperature (30°C) slowly 
at a rate of -3°C/h to crystallize the parent polymer 
chains on the seeds. The bath temperature was subse-
quently increased and maintained for about 2 h at each 
elution temperature (ET) to elute the polymer chains 
of specific crystallizability completely by a stream of 
pure solvent (xylene). After dissolution of polymer 
chains, the fractions in solvent steam were treated 
with anti-solvent (acetone) to separate and precipitate 
the polymer fractions. After separation, the prepared 
fractions were tested by subsequent tests including 
DSC and TGA.

Structural analysis
Fourier transform infrared (FTIR) spectrometer (Ver-
tex 80, Bruker, Germany) was used to characterize 
the parent polymer structure. The attenuated total re-

Table 1. Specifications of the parent polymer.

Property Test 
method

Typical 
value Reference

Melting point (°C) ISO 3146 125.3 Measured

Melt flow index (MFI)
(190 °C/2.16 kg) (g/10 min)

ISO 1133 0.16 ±0.01 Datasheet

Melt flow index (MFI)
(190 °C/21.6 kg) (g/10 min)

ISO 1133 17.01±0.01 Datasheet

Density (g/cm3) ISO 1183 0.935 Datasheet

Butyl branch content (mol%) 1H NMR 1.2 Measured
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was prepared by FTIR as shown in Figure 1. The C-H 
rocking, methyl stretching, C-H bending and stretch-
ing at 717, 1378, 1462, 2847 and 2914 cm-1 wave-
numbers; respectively, gave indications of a common 
structure of PE [56]. Butyl branch content of the par-
ent polymer was calculated based on 1H NMR and 
presented in Table 1.

Mw and MWD of the parent polymer and P-TREF 
fractions are shown in Figure 2 and a quantitative com-
parison of the results is reflected in Table 2. As it is 
noticed in Table 2, a broad MWD (≈7.3) for the parent 
polymer is obtained. Also, as it can be found in sec-
tion of "Investigation on comonomer distribution", a 
broad short-chain branch distribution (SCBD≈1.2) has 
been calculated based on Eqn 6. Both of the obtained 
distributions are in a good agreement with previous 
research reports which propose a broad CCD for Phil-

lips based ethylene copolymers [14-16]. Also, as it can 
be seen in Table 2, in an agreement with the literature 
[57, 58], by rising the fraction temperature (lowering 
the SCB content), the molecular weight is increased 
except that for 60-70 fraction, though a narrow MWD 
can be more or less observed for the fractions.

Investigation on comonomer distribution
Figure 3 represents accumulative P-TREF profile of 
the parent polymer, which intonates a broad SCBD. 
Phillips catalysts cause heterogeneity in short-chain 
branched polyethylenes [14-16], this broad SCBD 
may be attributed to Phillips catalyst function dur-
ing polymerization. Also, methylene sequence length 
(MSL) of the fractions is plotted versus elution tem-
perature (ET) in Figure 3.

Zhang and Wanke have shown that MSL as a func-

Figure 1. FTIR spectrum of the parent polymer

Figure 2. Molecular weight distribution for the parent MDPE 
and P-TREF fractions

Table 2 SEC-MALLS obtained data for parent polymer and 
the P-TREF fractions.

Fraction Mn (g/mol) Mw (g/mol) MWD
60-70 40,000 55,000 1.4

70-75 14,000 46,000 3.3

75-80 15,000 53,000 3.5

80-85 18,000 64,000 3.6

85-90 30,000 104,000 3.5

90-95 55,000 159,000 2.9

95-100 106,000 259,000 2.4

100-110 112,000 379,000 3.4

Parent polymer 26,000 190,000 7.3

Figure 3. P-TREF cumulative profile of the parent polymer and 
MSL variations of the fractions versus elution temperature.
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tion of the melting temperature (Tm), in K can be esti-
mated by a calibration correlation, using Eqn 1 [59]:

10.3451
T

142.2 exp

2MSL

m

−







−

=       (1)

As it may be studied in Figure 3, by rising ET the MSL 
of the fractions is increased from about 79, at the most 
branched fractions, up to around 360 at the most linear 
fractions. A parabolic relationship is yielded between 
MSL and ET with regression coefficient of R2 ≈ 0.99 
which is valid in the range of 60°C < ET< 110 °C and 
can be predicted by Eqn 2:

MSL=0.24×(ET)2-33.92×(ET)+1281             (2)

Kakugo et al. have reported that ethylene content of 
different fractions of ethylene/1-hexene copolymer 
is increased by increase in elution temperature [60]. 
Adisson et al. have found that by increasing SCB con-
tent elution temperature is decreased for ethylene/1-
hexene copolymer through a linear correlation [61].

By counting the carbon atoms and CH3 groups for 
the ‘repeating unit’ in an ethylene/α-olefin molecule 
with the same methylene sequence length and neglect-
ing the effect of end groups, the short-chain branch 
(SCB) content, per 1000 carbons, as a function of 
MSL can be estimated by Eqn 3 [59], where i is the 
carbon number in the branch (e.g., for 1-hexene co-
monomer i is 4).

1iMSL
1000SCB

++
=            (3)

The number average short-chain branch content, 
nSCB , and weight average short-chain branch content, 

WSCB , might be calculated based on the first and sec-
ond moments of the SCB distributions, similar to the 
number and weight average molecular weight distri-
butions, according to Eqns 4 and 5:
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Where wi is the mass fraction of fraction i (obtained 

from P-TREF results); SCBi is the SCB content of 
fraction i (calculated based on Eqn 3) and n is the 
number of fractions (here; n= 8, section of "The role 
of comonomer content on melting temperature and 
crystallization behavior"). Using Eqns 4 and 5,   and  
are yielded around 6.4 and 7.8, respectively. Also in a 
similar way for calculation of MWD, the SCBD can 
be calculated, using Eqn 6:

n

w

SCB
SCB

SCBD =      (6)

The amount of SCBD has been calculated around 1.2. 
In comparison to the literature [59, 62], the obtained 
SCBD value can be assumed as a broad SCBD.

The role of comonomer content on melting tempera-
ture and crystallization behavior

DSC thermograms of the second heating cycle and 
the melting temperatures of P-TREF fractions are pre-
sented in Figure 4, while the detailed information is 
tabulated in Table 3. Due to small amount of some 
fractions, acquired at 30-40°C, 40-50°C, 50-60°C, 
110-120°C and 120-140°C, the thermal analysis of 
the samples is limited to the fractions mentioned in 
Table 3. In Figure 4, a fine confirmation on distinc-
tive separation of P-TREF fractions can be detected as 
complete segregated melting peaks.

Approximately a wide temperature range (~22°C) 
from ~111°C up to ~132°C for melting peaks is ob-
served alongside different fractions due to heteroge-
neity in SCB content. A broad melting temperature 
range for 1-hexene-linear low density polyethylene 
(LLDPE) and also a similar trend for variations in Tm 

versus SCB content have been reported for ethylene/1-

Figure 4. DSC thermograms of second heating cycle and 
melting temperatures for P-TREF fractions.
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hexene copolymer in the literature [61, 63]. 
Table 3 Detailed DSC data and the calculated pa-

rameters of P-TREF fractions.
Considering data in Table 3, a relationship between Tm 

and SCB content can be derived which is presented in 
Eqn 7 with regression coefficient of R2≈1. The Eqn 7 is 
analogous to Hosoda equation (Tm= -1.69×(SCB)+133) 
for Z-N catalyst based 1-hexene-PE [62].

Tm (°C) = -2.3 × (SCB) + 138.7        (7)

The Eqn 7 has small variations from Hosoda equation 
especially at SCB coefficient which determines the 
sensitivity of Tm to SCB content [36]. In an agreement 
with the obtained results, Yoon et al. have worked on 
melting behavior of different ethylene/α-olefin copo-
lymers synthesized by Z-N catalyst. They reported 
that the melting peak moves to a lower temperature 
regions as the density of the copolymers is decreased 
[64]. According to the Gibbs–Thomson equation (Eqn 
8), it is possible to determine the lamellar thickness of 
different lamellae [24, 65-67]:

c 
m 0m LH

e 21TT
×D

δ−
−=          (8)

Where Tm (K) is the observed melting point, T0m(K) is 

the equilibrium melting point of an infinite polyethyl-
ene crystal (414.5 K), DH is the enthalpy of fusion per 
unit volume (288×106 J/m3), δe is the surface energy 
of a polyethylene crystal (70×10-3 J/m2) and Lc (nm) 
is the thickness of a lamellae with melting point of 
Tm [28]. Also the crystallinity of each fraction can be 
calculated using Eqn 9:
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Where DHf is the enthalpy of fusion of each fraction 
and DHf* is the enthalpy of fusion of 100% crystalline 
polyethylene (286 J/g) [68]. In Figure 5, SCB content 
and Tm are plotted against Lc. Based on these obser-
vations, Eqn 10 for predicting the reduction of SCB 
content versus lamellae thickness, exponentially and 
Eqn 11 for estimating the increases in melting point 
against lamellae thickness, logarithmically are pro-
posed. Pérez et al. have studied on branched polyeth-
ylenes and showed that peaks in the end of endotherm 
thermograms may be associated to lamellae crystals 
formed by the crystallization of longer methylene se-
quences [69]. Also, Zhang et al. have reported simi-
lar trends for variations in SCB content versus Lc and 
also MSL against Lc [36]. Nitta and Tanaka [29] have 
studied on the mechanical behavior of branched poly-
ethylene with different SCB contents. They reported 
similar trend for reduction of Lc with SCB content.

SCB = -6.7 × Ln (Lc) + 26.2            (10)

Tm = 16.1 × Ln (Lc) + 80.3             (11)

Figure 3. Detailed DSC data and the calculated parameters 
of P-TREF fractions.

Fraction Tc
1 

(°C)
Tm

2 
(°C)

SCB3 
(br/1000 C)

Lc
4 

(nm)
Xc

5 
(%) MSL6

60-70 100.2 110.9 11.9 6.6 38.2 78.5

70-75 101.6 113.1 11.0 7.1 41.0 85.8

75-80 104.9 116.3 9.6 8.0 47.1 98.9

80-85 108.4 119.9 8.1 9.4 45.7 118.9

85-90 110.9 122.3 7.0 10.6 52.4 137.0

90-95 111.1 125.2 5.8 12.5 50.2 167.5

95-100 111.2 129.9 3.8 17.6 50.2 258.4

100-110 110.9 132.4 2.7 22.5 51.2 360.3

30-140 
(parent 
polymer)

114.5 125.3 5.8 12.6 46.6 168.7

1Tc: Crystallization temperature.
2Tm: Melting temperature.
3SCB: Short chain branch content calculated by Eqns 1 and 3.
4Lc: Lamellae thickness calculated by Gibbs-Thomson 
relationship Eqn 8.
5Xc: Crystallinity calculated by Eqn 9.
6MSL: Methylene sequence length calculated by Eqn 1.

Figure 5. SCB content and Tm versus lamellar thickness of 
P-TREF fractions.
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Where SCB, Lc and Tm are calculated in br/1000 C, 
nm and °C, respectively. 

In Figure 6, crystallization temperature (Tc) and 
crystallinity have been plotted versus SCB content. 
As it can be viewed, both the Tc and Xc are decreased 
by SCB content. But, the interesting point is a two-
stage behavior. The Figure 6 can be divided into two 
sections: section (1): SCB < 7.0 and section (2): SCB 
> 7.0. In section (1) of Figure 6 a constant amount for 
Tc and also a weak fluctuation around a constant value 
for Xc can be observed, it means that the crystalliza-
tion temperature for SCB contents lower than 7.0 is 
independent of branching content. But, in section (2) 
of Figure 6 a decreasing trend for both Xc and Tc is vis-
ible which can be presented by Eqns 12 and 13. 

Tc = -2.2 × (SCB) + 126.2               (12)

Xc = -2.5 × (SCB) + 68.9                (13)

Where Tc, Xc and SCB are considered in °C, % and 
br/1000 C.

The section (2) of Figure 6 is usually reported in 
previous studies. Paredes et al. have shown that by 
increasing the content of 1-hexene comonomer in 
ethylene/1-hexene copolymer made with different 
supported metallocene catalysts, crystallization tem-
perature and crystallinity of copolymers are decreased 
[70]. Assumption et al. have reported that by increas-
ing the elution temperature of ethylene/1-hexene frac-
tions the crystallinity is enhanced [71]. Through an 
increase in the number of short-chain branches via the 
incorporation of α-olefin comonomers such as 1-bu-
tene, 1-hexene, and 1-octene, the polymer crystallinity 
and density can be reduced [72, 73].

By comparing the increasing trend of Tm of all the 
fractions (Figure 4) and also the constant values for 
Tc in the section (1) of Figure 6, a question is sug-
gested that why the fractions with SCB contents lower 
than 7.0, show about 10 °C difference in melting tem-
peratures while, they have very close crystallization 
temperatures? It should be mentioned that the MSL af-
fects the crystallinity when the maximum MSL is less 
than the "critical value for the onset of chain folding", 
Lcrit [59]. This means that at high SCB contents where 
MSL< Lcrit, the MSL determines the crystallizability 

of a polymer chain at given crystallization conditions. 
It is likely that at high SCB contents the crystallization 
temperature as well as the crystallinity is adjusted by 
the MSL or SCB content. But, at low SCB contents 
where MSL > Lcrit, the crystallizability of a polymer 
chain at given crystallization conditions would be in-
dependent of MSL or SCB content. Although Lcrit is 
reported around 250 carbons in the literature [74-76] 
but, it should be noted that these works have estimated 
Lcrit using some linear paraffinic oligomeric calibrants 
such as C104H210 or uniform alkanes such as C246H494 or 
C198H398. Therefore, for a "polymeric" structure con-
taining "butyl branches", the Lcrit might be different. 
Based on the results obtained here, the Lcrit for the par-
ent polymer at the crystallization condition used here 
is estimated around 137 carbons (the corresponding 
MSL of SCB content of 7.0). Where at MSLs lower 
than 137 carbons, the Tc is controlled by SCB content, 
while at higher MSLs than 137 carbons Tc is indepen-
dent of SCB content. On the other hand, melting tem-
perature maintains its increasing trend for all fractions 
due to higher motivation of more linear chains.

Thermal degradation behavior: dependency on 
1-hexene content
TGA/differential thermogravimetric (DTG) analysis 
was carried out on the parent polymer and the P-TREF 
fractions. The thermogravimetric data are provided in 
Table 4 and TGA/DTG curves are depicted in Figure 
7. In order to assess the repeatability of DSC measure-
ments, the fraction 75-80 had been consumed before 
TGA/DTG, and therefore, the other fractions were 

Figure 6. Tc and crystallinity versus short-chain branch con-
tent for P-TREF fractions.
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tested here (Table 4). 
Figures 7(a) and (b) illustrate the onset of degra-

dation, at the temperatures of around 60°C to about 
460°C, known here as "degradation initiation stage". 
In degradation initiation stage dissimilar behaviors are 
observed for different P-TREF fractions. Also, at the 
temperature range of around 420°C to about 520°C, a 
"degradation propagation stage" appears. The differ-
ences between mass loss and mass derivative curves 
in Figures 7 (c) and (d)) can be easily detected. As 
it is reflected in Table 4, by decreasing SCB content 
from ~12 (br/1000 C) (for fraction of 60-70°C) to ~3 
(br/1000 C) (for fraction of 100-110°C) degradation 
initiation temperature (T5%) and temperature at maxi-
mum degradation rate (Tmax) are increased moderately 
from ~ 426°C to ~ 457°C (3.4°C/SCB) and from ~ 
487°C to ~ 490°C (0.4°C/SCB), respectively. It means 
that by decreasing each single SCB per 1000 carbon in 
the polymer backbone there would appear about 3.4°C 
incremental shift at T5%. This incremental shift chang-
es to 0.4°C by decreasing each about single SCB per 
1000 carbons in the polymer backbone at Tmax. Based 
on these results, it is clearly confirmed that comono-

Table 4. TGA/DTG data of the parent polymer and the P-
TREF fractions.

Fraction T5%
1 

(°C)
T95%

2 

(°C)
T95%- T5%

3 
(°C)

Tmax
4

 

(°C)
SCB5 

(br/1000 C)
60-70 426.1 499.1 73.0 486.5 11.9

70-75 440.6 497.6 56.9 485.4 11.0

80-85 446.8 499.0 52.3 487.1 8.1

85-90 448.8 499.1 50.3 487.4 7.0

90-95 453.8 500.8 46.9 490.2 5.8

95-100 439.4 500.4 61.0 488.8 3.8

100-110 457.1 501.1 43.9 490.1 2.7

30-140
(parent 
polymer)

451.9 499.2 47.4 488.2 5.8

1 T5%: Temperature at 5% mass loss (degradation initiation 
temperature).
2 T95%: Temperature at 95% mass loss (degradation termination 
temperature).
3 T95%- T5%: Considered as width of DTG peak.
4 Tmax: Temperature at maximum degradation rate.
5 SCB: Short-chain branch content.

Figure 7. TGA and DTG curves of P-TREF fractions. An adapted expanded scale is used for each fraction in order to compare 
degradation peak shapes more accurately: (a) TGA curves of initiation stage (60-460°C), (b) DTG curves of initiation stage (60-
460°C), (c) TGA curves of propagation stage (420-520°C) and (d) DTG curves of propagation stage (420-520°C).
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mer content affects thermal degradation behavior of 
ethylene/1-hexene copolymer, with respect to T5% and 
Tmax. Also it is found that the T5% is about 8.5 times 
more sensitive to SCB content than Tmax. Gauthier et 
al. have shown that MSL affects the thermo-oxidative 
degradation of polyethylene films [68]. As a first effort 
to formulate a relationship between SCB content and 
Tmax as well as T5%, Eqns 14 and 15 (Figures 8a and 
8b) can be obtained using data in Table 4.

Tmax = -0.46 × (SCB) + 491.2                     (12)

T5% = -2.14 × (SCB) + 460.1          (13)

Similar values have been obtained for degradation 
termination temperature (T95%), as it is considered in 
Table 4. On the other hand the T5% is decreased by 
SCB content. Therefore, it can be concluded that the 
width of DTG peak (T95%-T5%) is broadened by SCB 
content. For this reason the DTG peaks show a tail in 
the left side as it is visible in Figure 7(d). 

CONCLUSION

The effect of comonomer content on thermal behav-
ior (crystallization, melting and degradation) of an 
ethylene/1-hexene copolymer has been investigated in 
detail and the following findings obtained:
-    A 22°C difference in Tm has been found for fractions  

which differ by 9 (br/1000 C) in SCB content.
- Different relationships between SCB content and 

physical characteristics (Tm, Tc, Xc and Lc) have 
been found for Phillips-based ethylene/1-hexene 
copolymer.

- For the first time two relationships have been ob-
tained between thermal degradation parameters 
(Tmax and T5%) and SCB content.

- The degradation parameters, e.g., T5% and Tmax have 
been observed to be decreased by comonomer con-
tent of ethylene/1-hexene copolymer.

Based on these findings it is recommended to inves-
tigate the role of other branching parameters, such as 
short-chain branch distribution (intermolecular and 
intramolecular), or short-chain branch length on low 
and high temperature thermal behavior of ethylene/1-
hexene copolymer.
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