Membrane
Saba Raveshiyan; Parya Amirabedi; Reza Yegani; Behzad Pourabbas; Akram Tavakoli
Abstract
Wetting of polymeric hollow fiber membranes by chemical absorbents is one of the main challenges of gasliquid membrane contactors. This study explored an appropriate method to fabricate a superhydrophobic polypropylene (PP) hollow fiber membrane by incorporating fluorinated silica nanoparticles (fSiO2 ...
Read More
Wetting of polymeric hollow fiber membranes by chemical absorbents is one of the main challenges of gasliquid membrane contactors. This study explored an appropriate method to fabricate a superhydrophobic polypropylene (PP) hollow fiber membrane by incorporating fluorinated silica nanoparticles (fSiO2 NPs) on the PP membrane surface. The effect of the hydrophobic agent on the water repellent properties of the composite membrane was studied by varying (1H,1H,2H,2H-perfluorooctyltriethoxysilane/ tetraethylorthosilicate) (PFOTES/TEOS) molar ratio from 0 to 1. The composite membranes were characterized using field emission scanning electron microscopy (FESEM), attenuated total reflection-Fourier transform infrared (ATR-FTIR), contact angle, mechanical strength and static wettability. The obtained results showed that the surface hydrophobicity and mechanical strength of the composite membranes increased compared to pure ones. The contact angle of 156° was obtained when the (PFOTES/ TEOS) molar ratio was 0.5. Furthermore, the CO2 absorption experiment was done to evaluate the performance of the fabricated membranes in a gas-liquid membrane contactor. The obtained results showed that the PP/fSiO2 composite membrane has more potential to be used in gas-liquid membrane contactors than commonly used polymeric membranes
Characterization
Mina Ahsani; Meisam Dabiri Havigh; Reza Yegani
Abstract
A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin ...
Read More
A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each protein filtration, increasing the operational pressure led to higher irreversible fouling ratio (IFR) and consequently lower flux recovery (FR). Moreover, in collagen filtration, the higher portion of the total fouling ratio (TFR) belonged to reversible fouling ratio (RFR) and the FR of membrane in collagen solution filtration was higher than that in BSA solution filtration at the same operational pressure. The FR values were about 42.48 and 56.32% at 2 bar, 52.28 and 64.53% at 1.5 bar and 65.97 and 75.83% at 0.75 bar for BSA and collagen solutions filtrations, respectively. Investigation of the fouling mechanisms using Hermia's models showed that the cake filtration mechanism of fouling turned to pore blocking mechanism in both proteins filtrations by increasing the operational pressure. Obtained results using combined fouling models for all filtration processes confirmed that the cake filtration-standard blocking model (CFSBM) was the prevailing mechanism, whilst the contribution of standard blockage increased by increasing the operational pressure.