Catalysis
Tatiana B. Mikenas; A. V. Sholma; Vladimir A. Zakharov; Mikhail Matsko
Abstract
The paper presents data on the effect exerted by magnesium dichloride in Ziegler-Natta catalysts on the activity and molecular weight of polyethylene (PE) produced by ethylene polymerization in the absence or presence of hydrogen. It was found that ethylene polymerization in the absence of hydrogen over ...
Read More
The paper presents data on the effect exerted by magnesium dichloride in Ziegler-Natta catalysts on the activity and molecular weight of polyethylene (PE) produced by ethylene polymerization in the absence or presence of hydrogen. It was found that ethylene polymerization in the absence of hydrogen over titanium-magnesium catalysts (TMCs) with different ratio of titanium chloride and magnesium dichloride (Ti/Mg = 0.5 and 0.07), oxidation state of titanium (TiCl3 or TiCl4) and structural characteristics of the catalysts leads to the formation of PE with a close molecular weight. At the same time, PE obtained over a δ-TiCl3 catalyst has a much (threefold) higher molecular weight. The introduction of hydrogen during polymerization for decreasing the molecular weight of PE is accompanied by a sharp drop in activity of the δ-TiCl3 catalyst, in distinction to the highly active supported TMC containing 3 wt. % Ti. Data about the effect of hydrogen content during polymerization on the molecular weight of PE were used to calculate the ratio of rate constants for polymer chain transfer with hydrogen (KtrH) and polymer chain propagation reaction (Кр). This value was close for TMCs of different composition containing magnesium dichloride. In the case of δ-TiCl3, the KtrH/Кр value was approximately two times lower compared to TMCs.
Catalysis
Ting Fu; Ruihua Cheng; Xuelian He; Zhen Liu; Zhou Tian; Boping Liu
Abstract
Vanadium-modified (SiO2/MgO/MgCl2)•TiClx Ziegler-Natta catalysts were prepared through co-impregnation of water-soluble magnesium and vanadium salts under different pH values. Several key factors such as pH value of co-impregnation solution during catalyst preparation, catalyst performances including ...
Read More
Vanadium-modified (SiO2/MgO/MgCl2)•TiClx Ziegler-Natta catalysts were prepared through co-impregnation of water-soluble magnesium and vanadium salts under different pH values. Several key factors such as pH value of co-impregnation solution during catalyst preparation, catalyst performances including catalytic activity, ethylene/1-hexene copolymerization and hydrogen response were investigated. It is found that the components, structures and performance of the catalysts are obviously affected by changing the pH value (pH=5, 7 and 9) of co-impregnation solution. An appropriate pH value (pH=7) can maximize catalytic activity and hydrogen response, while lower pH value (pH=5) is beneficial to the 1-hexene incorporation. The GPC results show that the polymers obtained have high average molecular weight.
Catalysis
Farshid Nouri-Ahangarani; Mehdi Nekoomanesh; Seyed Amin Mirmohammadi; Naeimeh Bahri-Laleh
Abstract
The aim of this study was to examine the effect of catalyst doping on the performance of MgCl2. EtOH/TiCl4 catalyst system. In this regard, a series of undoped as well as FeCl3-doped catalysts was prepared and employed in 1-hexene polymerization. A modified catalyst containing 10 wt. % of FeCl3 dopant ...
Read More
The aim of this study was to examine the effect of catalyst doping on the performance of MgCl2. EtOH/TiCl4 catalyst system. In this regard, a series of undoped as well as FeCl3-doped catalysts was prepared and employed in 1-hexene polymerization. A modified catalyst containing 10 wt. % of FeCl3 dopant demonstrated the highest activity, with 32% activity increase compared to unmodified one, among the series. The GPC results showed a lower molecular weight as well as broader MWD for the poly1-hexenes obtained from FeCl3-doped catalyst. The distribution of active centers was analyzed using deconvolution of the MW profiles with using multiple Flory functions. It was demonstrated that the number of active sites increased by 10 wt. % FeCl3 doping, however, by more increasing the dopant amount to 15 wt.%, the number of active sites decreased. The 13C-NMR results indicated that, FeCl3 doping did not have a considerable effect on the polymer tacticity (with total tacticity of 53 %), however it increased by donor presence to the maximum value of 60 %.
Catalysis
Goond Hongmanee; Patchanee Chammingkwan; Toshiaki Taniike; Minoru Terano
Abstract
Mg(OEt)2 with spherical morphology is one of the most important precursors for the preparation of industrial Ziegler-Natta catalysts. In the present article, morphology evolution of Mg(OEt)2 particles is studied in the course of the synthesis. The morphology of Mg(OEt)2 particles is observed throughout ...
Read More
Mg(OEt)2 with spherical morphology is one of the most important precursors for the preparation of industrial Ziegler-Natta catalysts. In the present article, morphology evolution of Mg(OEt)2 particles is studied in the course of the synthesis. The morphology of Mg(OEt)2 particles is observed throughout the process by SEM. The results show that Mg(OEt)2 particles are formed through i) seed generation on Mg surfaces, ii) seed growth and isolation as independent particles, and iii) further growth and shaping into smoother and more spherical particles. The size of Mg sources greatly affects the rates of these processes to different extents. A larger size of Mg leads to slower seed formation and growth, and detachment of clustered seeds, making the final particles larger and less spherical, respectively. The crystal growth of Mg(OEt)2 is also affected by the size of Mg sources, which in turn differentiates the pore size distribution to affect the catalyst composition and performance.
Catalysis
Toshiaki Funako; Patchanee Chammingkwan; Toshiaki Taniike; Minoru Terano
Abstract
In Ziegler-Natta olefin polymerization, the pore architecture of catalysts plays a crucial role in catalytic performances and polymer properties. While the type of preparation routes (such as chemical reaction and solution precipitation) greatly affects the catalyst pore architecture as a result of different ...
Read More
In Ziegler-Natta olefin polymerization, the pore architecture of catalysts plays a crucial role in catalytic performances and polymer properties. While the type of preparation routes (such as chemical reaction and solution precipitation) greatly affects the catalyst pore architecture as a result of different solidification mechanisms, the modification of the pore architecture within a given route has been hardly achieved. In this study, we propose a simple way to vary the pore architecture of Mg(OEt)2-based Ziegler-Natta catalysts by the addition of a second alcohol. It was found that the addition of a second alcohol during Mg(OEt)2 synthesis affected not only the morphology of Mg(OEt)2 macroparticles but also the shape of building units. The degree of alternation was found to be sensitive to the molecular structure of a second alcohol. Noticeable influences were observed in the case of branched alcohols, where the transformation of plate-like building units to cylindrical ones led to the generation of totally different pore size distributions of resultant catalysts.