Olefin polymerization and copolymerization
Majedeh Mroofi; Gholamhossein Zohuri; Saeid Ahmadjo; Navid Ramezanian
Abstract
Bicenter (BCn) cobalt-bis(imine) catalysts were synthesized, used to polymerize methyl methacrylate (MMA), and 1-hexene. The effect of catalyst structure, bridging ligand, and polymerization reaction conditions were investigated. Synthesis of primary ligand of (2,6-dibenzhydryl-4-ethoxyphenyl)-N=(CH3)-C(CH3)=O ...
Read More
Bicenter (BCn) cobalt-bis(imine) catalysts were synthesized, used to polymerize methyl methacrylate (MMA), and 1-hexene. The effect of catalyst structure, bridging ligand, and polymerization reaction conditions were investigated. Synthesis of primary ligand of (2,6-dibenzhydryl-4-ethoxyphenyl)-N=(CH3)-C(CH3)=O is prepared. Following to that, the final ligands of BC1 and BC2 bicenter catalysts were prepared via reacting the primary ligand with 2,3,5,6-tetramethylbenzene-1,4-diamine and 4,4-methylenedianiline bridges, respectively. The BC1 catalyst demonstrated higher activity than the BC2 catalyst. The highest activity for the BC1 catalyst was obtained when the co-catalyst to catalyst molar ratio was [Al]/[Co]=1500:1, and the polymerization temperature was 40 °C. In comparison the BC2 catalyst demonstrated the highest activity in [Al]/[Co]=500:1 ratio, polymerization temperature of 70 °Cand showed higher thermal stability. 1HNMR analysis revealed that the highest branching density for poly(methyl methacrylates) (PMMA) produced by BC1 and BC2 catalysts was 222 and 249 branches per 1000 carbon atoms, respectively. PMMA synthesized with BC2 catalysts had the highest syndiotacticity (59%). The polymer produced with bicenter catalyst (BC1) had a relatively broad molecular weight distribution (2.9), according to GPC analysis. The synthesized catalysts demonstrated appropriate activity for the polymerization of MMA, but only moderate activity for 1-hexene monomer
Characterization
Mehri Dana; Gholam Hossein Zohuri; Navid Ramezanian; Saeid Asadi Shahidi; Sohail Yazdanbakhsh
Abstract
Silane cross-linking of metallocene-based polyethylene-octene elastomer (POE)/linear low density polyethylene (LLDPE) blend was carried out using two-step Sioplas process in an industrial scale twin-screw extruder. In the study, grafting and cross-linking reactions of vinyl trimethoxy silane (VTMS) were ...
Read More
Silane cross-linking of metallocene-based polyethylene-octene elastomer (POE)/linear low density polyethylene (LLDPE) blend was carried out using two-step Sioplas process in an industrial scale twin-screw extruder. In the study, grafting and cross-linking reactions of vinyl trimethoxy silane (VTMS) were analyzed using FTIR technique. It was found that the cured compound showed absorption peaks at 1078 cm-1 and 955 cm-1 related to Si-O-Si bonds. A peak was also observed at 3405 cm-1 of hydroxyl group produced from hydrolysis of methoxyethylene group during of curing process, reflecting that curing reaction was not completed. The samples were cured at different time intervals (15 min-16 hours). The gel content values determined by solvent extraction and FTIR were in good agreement at curing times more than 4 hours. The efficiency of the silane grafting reaction was determined using the ratio of the absorption peak at 1092 cm-1 characteristic of methoxy to the transmittance peak at 1378 cm-1 characteristic of methyl group, which is considered as the internal standard. The results showed the highest efficiency of silane grafting reaction at 5 w% of VTMS with the least amount of internal standard ratio (0.029), at which the lowest MFI value, and the highest values for gel content, tear strength, compression set and hot set 200 °C were obtained.
Catalysis
Majedeh Maroofi; Gholam Hossein Zohuri; Saeid Ahmadjo; Navid Ramezanian
Abstract
A mono-nuclear catalyst of bis-imine cobalt (MC) was synthesized with using 2,6-dibenzhydryl-4-ethoxy phenyl as a ligand. The so huge ligand was prepared via the reaction of 2,6-dibenzhydryl-4-ethoxy phenyl)-N=(CH3)-C(CH3)=O with diacetyl with equal mole stoichiometry in presence of formic acid catalysis. ...
Read More
A mono-nuclear catalyst of bis-imine cobalt (MC) was synthesized with using 2,6-dibenzhydryl-4-ethoxy phenyl as a ligand. The so huge ligand was prepared via the reaction of 2,6-dibenzhydryl-4-ethoxy phenyl)-N=(CH3)-C(CH3)=O with diacetyl with equal mole stoichiometry in presence of formic acid catalysis. The catalyst was synthesized via a reaction between the ligands and cobalt salt (CoCl2). The catalyst was used for polymerization of methyl methacrylate (MMA), (a polar monomer) in the presence of modified methylaluminoxane (MMAO). The highest polymerization activity (8.6 g PMMA/mmol cat. h) was obtained at [cocatalyst]/[catalyst]=1000:1 molar ratio and at room temperature reaction. For the prepared PMMA, Polymer with branching density of 263/1000C was obtained using 1H NMR technique calculation. The microstructure of one of the produced PMMA was as follow: 48% syndiotactic, 29% isotactic and 23% atactic. GPC analysis of the polymer showed a number average molecular weight of about 5.7 × 105 g/mol and a narrow molecular weight distribution of 1.57.